首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7065篇
  免费   935篇
  国内免费   393篇
电工技术   457篇
综合类   493篇
化学工业   111篇
金属工艺   34篇
机械仪表   452篇
建筑科学   530篇
矿业工程   221篇
能源动力   57篇
轻工业   102篇
水利工程   233篇
石油天然气   23篇
武器工业   1213篇
无线电   2100篇
一般工业技术   207篇
冶金工业   118篇
原子能技术   9篇
自动化技术   2033篇
  2024年   296篇
  2023年   805篇
  2022年   721篇
  2021年   830篇
  2020年   679篇
  2019年   801篇
  2018年   232篇
  2017年   339篇
  2016年   295篇
  2015年   293篇
  2014年   432篇
  2013年   309篇
  2012年   362篇
  2011年   339篇
  2010年   284篇
  2009年   302篇
  2008年   254篇
  2007年   201篇
  2006年   176篇
  2005年   175篇
  2004年   101篇
  2003年   57篇
  2002年   18篇
  2001年   18篇
  2000年   6篇
  1999年   13篇
  1998年   10篇
  1997年   16篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   7篇
  1991年   3篇
  1989年   1篇
  1986年   5篇
排序方式: 共有8393条查询结果,搜索用时 15 毫秒
91.
针对中继协同无人机(UAV)辅助的无线通信网络,提出一种基于认知无线电网络(CRN)的物理层安全通信方案。利用二次发射机协同解码转发中继向目的接收机发送机密消息,将UAV用作移动干扰器发送干扰噪声,以降低窃听者的解码能力。在不影响主用户通信的前提下,通过联合优化UAV的飞行轨迹和发射功率提高系统的平均保密率,采用基于连续凸逼近的算法求解近似凸规划的保密率最大化问题。仿真结果表明,相较于优化功率和优化轨迹这两种传统方案,该方案能够进一步提高CRN系统通信的安全性。  相似文献   
92.
为了抑制四旋翼无人机(UAV)吊挂飞行中的载荷摆动,研究了一种新的基于加速度补偿的抗摆控制方法。首先,基于拉格朗日法建立了四旋翼UAV吊挂系统的非线性动态特性方程,并构建了能量函数来设计飞行控制系统,使四旋翼UAV跟踪参考轨迹;然后,利用吊挂载荷运动轨迹广义误差设计抗摆控制器,对四旋翼UAV进行加速度补偿以修正UAV的运动轨迹,进而抑制因四旋翼UAV快速运动造成的吊挂载荷摆动;最后,通过仿真对加速度补偿前后的UAV吊挂飞行控制效果进行对比分析。仿真结果表明,基于加速度补偿的飞行控制方法不仅能保证UAV吊挂飞行的平稳,而且能为飞行控制系统提供足够的稳定裕度。  相似文献   
93.
针对传统遗传算法收敛速度慢、容易陷入局部最优、规划路径不够平滑、代价高等问题,提出了一种基于改进遗传算法的无人机(UAV)路径规划方法,该算法对遗传算法的选择算子、交叉算子和变异算子进行改进,从而规划出平滑、可飞的路径。首先,建立适合UAV田间信息获取的环境模型,并考虑UAV的目标函数与约束条件以建立适合本场景的更为复杂、精确的数学模型;然后,提出了混合无重串选择算子、非对称映射交叉算子和启发式多次变异算子,寻找最优路径以及扩大种群搜索范围;最后,采用三次B样条曲线对规划出的路径进行平滑,得到平滑的飞行路径,并且减少了算法的计算时间。实验结果表明,与传统遗传算法相比,所提算法的代价值降低了68%,收敛迭代次数减少了67%;相较蚁群优化(ACO)算法,其代价值降低了55%,收敛迭代次数减少了58%。通过大量对比实验得出,当交叉率的值为(1/染色体长度)时,算法的收敛效果最好。在不同环境下进行算法性能测试,结果表明所提算法具有很好的环境适应性,适合于复杂环境下的路径规划。  相似文献   
94.
为了提高无人机(Unmanned Aerial Vehicle,UAV)系统的智能避障性能,提出了一种基于双延迟深度确定性策略梯度(Twin Delayed Deep Deterministic Policy Gradient,TD3)的改进算法(Improved Twin Delayed Deep Deterministic Policy Gradient,I-TD3)。该算法通过设置两个经验缓存池分离成功飞行经验和失败飞行经验,并根据两个经验缓存池的不同使用目的分别结合优先经验回放(Prioritized Experience Replay)方法和经验回放(Experience Replay)方法,提高有效经验的采样效率,缓解因无效经验过高导致的训练效率低问题。改进奖励函数,解决因奖励设置不合理导致的训练效果差问题。在AirSim平台上实现仿真实验,结果表明在四旋翼无人机的避障问题上,I-TD3算法的避障效果优于TD3算法和深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)算法。  相似文献   
95.
针对物流配送领域的一种新型交付方式--无人机联合配送车协同配送包裹,研究无人机与配送车联合路径以最小化交付时间的问题,提出了一种新型优化迭代算法。该算法将问题分为两步,首先确定配送车路线及客户节点分配,然后固定配送车路线及无人机节点,确定二者汇合节点生成无人机配送路线。算法最后保留满足约束条件的无人机路线及对应配送车路线,得到联合配送总耗时。以此方式从最少的配送车节点开始迭代,通过更新全局上界得到最优解。通过对10、11节点的示例验证,表明该算法能够有效缩小搜索范围,提高运行效率,在合理时间内求解中小规模示例。  相似文献   
96.
为了求解同时实现空间协同和时间协同的多无人机时空协同问题,提出了基于分布式模型预测控制的多无人机在线协同航迹规划的方法。建立了由MPC(Model Predictive Control,)控制器、空间协同模块和时间协同模块组成的多无人机分布式时空协同航迹规划框架结构。MPC将时空协同问题转化为滚动优化问题,优先级的方法实现了空间协同和时间协同的解耦,同时改进了碰撞冲突消解规则,并设计了时间冲突消解规则,解决了分布式时空协同问题的动作一致性问题。仿真实验表明,该方法可以有效地实现多无人时空协同航迹规划。  相似文献   
97.
面向无人机自主侦察任务中在线目标识别与定位需求,首先梳理了无人机侦察中目标识别领域的相关研究成果;然后,介绍了Faster RCNN目标识别算法的实现原理,并针对任务需求进行了改进;之后,介绍了图像拼接的相关算法并进一步提出了目标相对定位算法;最后,设计了完整的侦察试验流程对所设计自主目标识别与定位方法进行验证;结果表明,改进的目标检测网络能够达到83.3%的识别准确率和35帧/秒的识别速度,所提出的相对定位算法可以达到0.702 m的平均定位精度,能够满足侦察无人机在线目标识别与定位的任务需求.  相似文献   
98.
为了降低在真实飞行器上测试新的控制策略时所存在的设备损坏风险,对四旋翼无人机的控制器和半实物仿真实验平台进行了开发和介绍;首先,分析了四旋翼无人机基本结构和飞行原理,并对其进行了动力学建模;其次,设计了对应的常规PID控制器和滑模控制器,并进行了Matlab仿真对比和分析;最后,展示了采用先进的基于模型的设计方法和代码自动等技术的半实物仿真实验平台,并详细介绍了其硬件和软件的总体架构和不同模块的配置;仿真结果表明所设计滑模控制器相比于PID控制器有更好的控制效果,并给出了其在半实物仿真平台上用来研究四旋翼无人机姿态控制的可行性。  相似文献   
99.
目前四旋翼无人机大部分都采用经典控制方法进行控制律的设计,然而控制参数的选择和对被控对象数学模型的依赖一直是经典控制方法设计中需要克服的问题;针对此问题,采用了一种基于深度强化学习算法Deep Q Network的无人机控制律设计方法,以四旋翼姿态角和姿态角速率作为三层神经网络的输入数据,最终输出动作值函数,再根据贪婪策略进行动作的选取,通过与环境的不断交互,智能体根据奖惩信息来更新神经网络的权值,使得智能体朝着获得累积回报最大值的方向选取动作;仿真结果表明在经过强化学习训练之后,四旋翼姿态角能够快速准确地跟踪上参考指令的变化,证明了基于强化学习的四旋翼无人机控制律的可行性,从而避免了传统控制方法对控制参数的选择与控制模型的依赖。  相似文献   
100.
传统无人机飞行路径自动规划方法无法获取全部障碍物信号,使无人机飞行不能达到避障效果,导致飞行路线规划效果较差;为此提出基于贝叶斯决策的无人机飞行路径自动规划方法;无人机飞行路径自动规划硬件模块包含自动规划模块、动画演示模块、地图导航模块和数据导出模块,自动规划模块负责控制无人机飞行;动画演示模块使用240PRO型号的LEWITT声卡,为展示飞机飞行路线提供声音;LS-TM8N地图导航模块通过串口将射频信号发送到天线的输入端,再由数据导出模块导出并保存相关数据;基于贝叶斯决策原理,结合贝叶斯元胞蚁群算法,计算贝叶斯先验概率和后验概率,规划无人机飞行路径,获取最优路径;实验结果表明,该方法遇到静态障碍物捕获的避障信号在-28~30mV范围内波动,动态障碍物捕获的避障信号在-27~30 mV范围内波动,与实际障碍物信号波动范围一致,避障效果较优.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号