首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28834篇
  免费   2769篇
  国内免费   1264篇
电工技术   3291篇
技术理论   1篇
综合类   2137篇
化学工业   8371篇
金属工艺   2197篇
机械仪表   1338篇
建筑科学   797篇
矿业工程   1107篇
能源动力   530篇
轻工业   2418篇
水利工程   239篇
石油天然气   1307篇
武器工业   399篇
无线电   2658篇
一般工业技术   3385篇
冶金工业   1259篇
原子能技术   284篇
自动化技术   1149篇
  2024年   86篇
  2023年   514篇
  2022年   760篇
  2021年   1005篇
  2020年   929篇
  2019年   734篇
  2018年   716篇
  2017年   905篇
  2016年   918篇
  2015年   1049篇
  2014年   1559篇
  2013年   1670篇
  2012年   2125篇
  2011年   2348篇
  2010年   1763篇
  2009年   1845篇
  2008年   1510篇
  2007年   2073篇
  2006年   1864篇
  2005年   1588篇
  2004年   1331篇
  2003年   1136篇
  2002年   905篇
  2001年   738篇
  2000年   604篇
  1999年   459篇
  1998年   333篇
  1997年   301篇
  1996年   241篇
  1995年   191篇
  1994年   145篇
  1993年   103篇
  1992年   109篇
  1991年   66篇
  1990年   57篇
  1989年   45篇
  1988年   32篇
  1987年   15篇
  1986年   18篇
  1985年   12篇
  1984年   6篇
  1983年   15篇
  1982年   9篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1975年   2篇
  1974年   5篇
  1955年   2篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
本文主要总结了新冠疫情期间作者的电磁场理论课程在线教学经验。对比分析了录播和直播的优缺点后,选择录播教学方式。基于超星网络教学平台,展示了录播网络教学的具体措施,包括网上答疑和学习效果检查以及在线批改作业等。给出了网络教学可以为线下教学继续使用的方法和手段,为疫情结束后的正常教学提供了新的网络教学补充措施。  相似文献   
2.
《Ceramics International》2022,48(20):30393-30406
Plasma methods are efficient processing for metal recovery from metal scrap, bearing minerals, electronic waste, etc. In this work, pure titanium nitride nanoparticles (TiN NPs) were synthesized from titanium scraps by the thermal plasma arc discharge (TPAD) method. TPAD synthesized TiN NPs have a highly crystalline nature with cubic and spherical morphologies with average particle sizes of 30–100 nm. Further, prepared TiN NPs involving surface modification (SM) or etching processes were investigated by using the non-thermal DC glow discharge plasma technique with air atmosphere at different processing times. SM@TiN NPs have a comparatively low crystalline, which was confirmed from the powder X-ray diffraction technique. SM@TiN NPs have very interesting core shell morphologies, which are due to the surface interactions of ionized air molecules. TiN and SM@TiN NPs have room-temperature ferromagnetic properties with high saturation magnetization (Ms) up to 2.6 and 3.0 emu/g and very high coercivity (Hc) of 235.5 Oe, respectively. TiN and SM@TiN NPs have superior energy storage performance with an outstanding specific capacitance of 192.8 and 435.1 F/g at a current density of 2 A/g with pseudocapacitive behavior. These results reveal that TiN and SM@TiN NPs have highly promising electrodes for supercapacitor applications.  相似文献   
3.
《Ceramics International》2022,48(7):9124-9133
The main obstacles in lithium-ion battery are limited by rate performance and the rapid capacity fading of LiNi0.8Co0.1Mn0.1O2 (NCM811). Herein, a novel three-dimensional (3D) hierarchical coating material has been fabricated by in situ growing carbon nanotubes (CNTs) on the surfaces of Ni–Al double oxide (Ni–Al-LDO) sheets (named as LDO&CNT) with Ni–Al double hydroxide (Ni–Al-LDH) as both the substrate and catalyst precursor. The resultant LDO&CNT nanocomposites are uniformly coated on the surfaces of NCM811 by the physical mixing method. The rate capability of the resultant cathode material retains to 78.80% at a current rate of 3C. Its capacity retention increases by 6.7–14.42% compared with pristine NCM811 after 100 cycles within a potential range of 2.75–4.3 V at 0.5C. The improved rate capability and cycle performance of NCM811 are assigned to the synergistic effects between Ni–Al-LDO and CNTs. The hierarchical LDO&CNT nanocomposites coating on the surface of NCM811 avoids the aggregation of conductive CNTs and the stacking of Ni–Al-LDO nanosheets. Furthermore, it accelerates Li+ and electrons shuttle and reduces the reaction of Li2O with H2O and CO2 in air, which results in Li2CO3 and LiOH alkali formation on the NCM811 surface.  相似文献   
4.
Resistant starch (RS) can be generated through heat moisture treatment (HMT). The HMT was conducted by modifying starch using different ratio of moisture content, high temperature and heating time. A number of studies showed that the effects of HMT on RS contents in cereals, pulses, tubers and fruits were inconsistent. This study aimed to analyse the impact of HMT on RS level in various carbohydrate sources through a meta-analysis approach. Study selection was conducted with the PRISMA method. There were 21 relevant studies and 67 data used for meta-analysis. The database was analysed by using Hedges’ d. The results showed that there was a significant impact of HMT on RS level of cereals, especially wheat. The highest increase in RS levels for various carbohydrate sources in starch was influenced by the interaction of treatment between water content at 15 ≤ x < 25%, heating time at 0.25 < x ≤ 6 h and temperature at 120 ≤ x ≤ 130 °C.  相似文献   
5.
With the rapid growth of wireless communication devices, the influences of electromagnetic fields (EMF) on human health are gathering increasing attention. Since the skin is the largest organ of the body and is located at the outermost layer, it is considered a major target for the health effects of EMF. Skin pigmentation represents one of the most frequent symptoms caused by various non-ionizing radiations, including ultraviolet radiation, blue light, infrared, and extremely low frequency (ELF). Here, we investigated the effects of EMFs with long-term evolution (LTE, 1.762 GHz) and 5G (28 GHz) bandwidth on skin pigmentation in vitro. Murine and Human melanoma cells (B16F10 and MNT-1) were exposed to either LTE or 5G for 4 h per day, which is considered the upper bound of average smartphone use time. It was shown that neither LTE nor 5G exposure induced significant effects on cell viability or pigmentation. The dendrites of MNT-1 were neither lengthened nor regressed after EMF exposure. Skin pigmentation effects of EMFs were further examined in the human keratinocyte cell line (MNT-1-HaCaT) co-culture system, which confirmed the absence of significant hyper-pigmentation effects of LTE and 5G EMFs. Lastly, MelanoDerm™, a 3D pigmented human epidermis model, was irradiated with LTE (1.762 GHz) or 5G (28 GHz), and image analysis and special staining were performed. No changes in the brightness of MelanoDerm™ tissues were observed in LTE- or 5G-exposed tissues, except for only minimal changes in the size of melanocytes. Collectively, these results imply that exposure to LTE and 5G EMFs may not affect melanin synthesis or skin pigmentation under normal smartphone use condition.  相似文献   
6.
The phase shift characteristics reflect the state change of electromagnetic wave in plasma sheath and can be used to reveal deeply the action mechanism between electromagnetic wave and plasma sheath. In this paper, the phase shift characteristics of electromagnetic wave propagation in plasma were investigated. Firstly, the impact factors of phase shift including electron density,collision frequency and incident frequency were discussed. Then, the plasma with different electron density distribution profiles were employed to investigate the influence on the phase shift characteristics. In a real case, the plasma sheath around the hypersonic vehicle will affect and even break down the communication. Based on the hypersonic vehicle model, we studied the electromagnetic wave phase shift under different flight altitude, speed, and attack angle. The results indicate that the phase shift is inversely proportional to the flight altitude and positively proportional to the flight speed and attack angle. Our work provides a theoretical guidance for the further research of phase shift characteristics and parameters inversion in plasma.  相似文献   
7.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
8.
The phosphorylation of serine 10 in histone 3 (p-S10H3) has recently been demonstrated to participate in spinal nociceptive processing. However, superficial dorsal horn (SDH) neurons involved in p-S10H3-mediated nociception have not been fully characterized. In the present work, we combined immunohistochemistry, in situ hybridization with the retrograde labeling of projection neurons to reveal the subset of dorsal horn neurons presenting an elevated level of p-S10H3 in response to noxious heat (60 °C), causing burn injury. Projection neurons only represented a small percentage (5%) of p-S10H3-positive cells, while the greater part of them belonged to excitatory SDH interneurons. The combined immunolabeling of p-S10H3 with markers of already established interneuronal classes of the SDH revealed that the largest subset of neurons with burn injury-induced p-S10H3 expression was dynorphin immunopositive in mice. Furthermore, the majority of p-S10H3-expressing dynorphinergic neurons proved to be excitatory, as they lacked Pax-2 and showed Lmx1b-immunopositivity. Thus, we showed that neurochemically heterogeneous SDH neurons exhibit the upregulation of p-S10H3 shortly after noxious heat-induced burn injury and consequential tissue damage, and that a dedicated subset of excitatory dynorphinergic neurons is likely a key player in the development of central sensitization via the p-S10H3 mediated pathway.  相似文献   
9.
《Ceramics International》2022,48(4):5154-5161
An investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.  相似文献   
10.
Herein, we propose a novel method to enhance the photoreactivity of an MOF catalyst by grafting isocyanate bonds ( NCO) and sulfhydryl-complexed copper ( SCu) onto ZIF-8 (NIF-SCu). The grafting process intercalated interlayer bands between the conduction and valence bands of ZIF-8, thereby providing a “ladder” for facile electron transition. The extreme improvement in the photoreactivity of NIF-SCu could be attributed to the enhancement in light responses in the range of 350–450 nm by  NCO groups and the widening of the visible light range of the MOF by  SCu groups. The formation of staggered energy levels in NIF-SCu could also narrow the band gap, lower the resistance, and facilitate the transfer of photogenerated carriers, thereby generating electrons with strong reduction potential in the  SCu conduction band. This study provides a new strategy for improving or even endowing the photoactivity of environmental functional materials with wide bandgaps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号