首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   44篇
  国内免费   1篇
电工技术   7篇
综合类   2篇
化学工业   159篇
金属工艺   10篇
机械仪表   8篇
建筑科学   9篇
能源动力   30篇
轻工业   121篇
水利工程   3篇
石油天然气   5篇
无线电   37篇
一般工业技术   93篇
冶金工业   15篇
原子能技术   2篇
自动化技术   49篇
  2024年   5篇
  2023年   19篇
  2022年   27篇
  2021年   60篇
  2020年   38篇
  2019年   46篇
  2018年   25篇
  2017年   34篇
  2016年   25篇
  2015年   21篇
  2014年   26篇
  2013年   36篇
  2012年   36篇
  2011年   33篇
  2010年   14篇
  2009年   18篇
  2008年   13篇
  2007年   6篇
  2006年   13篇
  2005年   4篇
  2004年   6篇
  2003年   8篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有550条查询结果,搜索用时 15 毫秒
1.
Resistant starch (RS) can be generated through heat moisture treatment (HMT). The HMT was conducted by modifying starch using different ratio of moisture content, high temperature and heating time. A number of studies showed that the effects of HMT on RS contents in cereals, pulses, tubers and fruits were inconsistent. This study aimed to analyse the impact of HMT on RS level in various carbohydrate sources through a meta-analysis approach. Study selection was conducted with the PRISMA method. There were 21 relevant studies and 67 data used for meta-analysis. The database was analysed by using Hedges’ d. The results showed that there was a significant impact of HMT on RS level of cereals, especially wheat. The highest increase in RS levels for various carbohydrate sources in starch was influenced by the interaction of treatment between water content at 15 ≤ x < 25%, heating time at 0.25 < x ≤ 6 h and temperature at 120 ≤ x ≤ 130 °C.  相似文献   
2.
Palm fatty acid distillate (PFAD) is a rich source of vitamin E. As compared to other vegetable oil, PFAD has higher tocotrienol (70–80%) over tocopherol content, which makes it a valuable source for vitamin E extraction. Current vitamin E extraction methods are not sustainable due to the intensive usage of chemical and high operational cost. Hence, the present study investigated for the first time using dry fractionation process as a green and economical pretreatment method for separating solid fraction (stearin) and liquid fraction (olein) in order to concentrate vitamin E from PFAD in olein fraction. We examined the dry fractionation conditions: crystallization ending temperature (36–44 °C), cooling rate (0.3 and 1.5°C min−1), stirring speed (20–125 rpm), and holding time (0–60 min) on the composition of unsaturated and saturated fatty acids as well as vitamin E content in liquid fraction (olein) and solid fraction (stearin) using gas chromatography and high performance liquid chromatography, respectively. In most of these conditions, vitamin E was ultimately higher in olein fraction as compared to stearin fraction, which is correlated with the high degree of unsaturation. Under a cooling rate of 0.3°C min−1, 90 rpm stirring speed, and ending crystallization of 38 °C, the highest vitamin E rich olein fraction was attained with 1479 ± 10.51 ppm in 50 g olein fraction as compared to 1366 ± 7.94 ppm in 500 g of unfractionated PFAD.  相似文献   
3.
4.
Listeria monocytogenes has continuously become a significant threat to consumers worldwide. The use of chemical-derived preservatives that are commonly associated with safety and nutritional issues has prompted the use of natural-based preservatives as a better alternative. Many bacterial strains including Paenibacillus polymyxa Kp10 have been reported to produce various antimicrobial proteins and compounds that are considered more natural. However, their stability in various physicochemical conditions should be examined before being applied in various types of food. In this study, the stability of four previously identified antilisterial proteins in P. polymyxa Kp10 upon exposure to several physicochemical conditions was examined. More than 80% residual antilisterial activity is conserved upon heat and proteinase K treatment. But, sensitivity to 24 h trypsin digestion has been observed. P1 and P2 proteins (histone-like DNA binding proteins HU) were sensitive to alkaline pH (pH 10-12) as compared with other proteins. More than 70% and 97% residual antilisterial activity were recovered after incubation in raw beef homogenates and simulated meat gravy model, respectively. However, the antilisterial activity of most proteins was highly compromised in chicken and salmon meat homogenates, and UHT cow milk. Inoculation of these proteins into Listeria-contaminated simulated meat gravy showed that all proteins exerted a bactericidal action against L. monocytogenes. P1 and P2 shared almost similar antilisterial activity rates, while P4 was the most potent antilisterial protein. The findings in this study could provide important preliminary data for future applications of these proteins as preservative in food products especially beef-based meat products.  相似文献   
5.
A novel process for the production of superabsorbent materials (hydrogels) from bacterial cellulose (BC) was developed. Prior to crosslinking with a water‐soluble polyethylene glycol diacrylate (PEGDA), BC was first carboxymethylated and functionalized with glycidyl methacrylate. The degree of crosslinking influenced the swelling properties of the hydrogels. The use of greater amounts of PEGDA enhanced the formation of a thicker macromolecular network containing fewer capillary spaces in the crosslinked gel. The maximum water retention value of the hydrogels containing 2.5–3.5 mmol of carboxyl groups per gram of gel reached 125 g g?1 in distilled water, and 29 g g?1 in saline (0.9% NaCl solution). The highly porous hydrogel architecture with a pore size of 350–600 µm created a high specific surface area. This enables rapid mass penetration in superabsorbent applications. The superabsorbent hydrogels reached 80% of their maximum water absorption capacity in 30 min. © 2018 Society of Chemical Industry  相似文献   
6.
7.
The research on electrode materials for supercapacitor application continues to evolve as the request of high‐energy storage system has increased globally due to the demand for energy consumption. Over the past decades, various types of carbon‐based materials have been employed as electrode materials for high‐performance supercapacitor application. Among them, graphene is 1 of the most widely used carbon‐based materials due to its excellent properties including high surface area and excellent conductivity. To exploit more of its interesting properties, graphene is tailored to produce graphene oxide and reduced graphene oxide to improve the dispersibility in water and easy to be incorporated with other materials to form binary composites or even ternary composites. Nowadays, ternary composites have attracted enormous interest as 2 materials (binary composites) cannot satisfy the requirement of the high‐performance supercapacitor. Thus, many approaches have been employed to fabricate ternary composites by combining 3 different types of electroactive materials for high‐performance supercapacitor application. This review focuses on the supercapacitive performance of graphene‐based ternary composites with different types of active materials, ie, conducting polymers, metal oxide, and other carbon‐based materials.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号