首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67012篇
  免费   7266篇
  国内免费   6899篇
电工技术   2637篇
技术理论   1篇
综合类   5668篇
化学工业   5008篇
金属工艺   26443篇
机械仪表   4150篇
建筑科学   1012篇
矿业工程   1281篇
能源动力   1177篇
轻工业   864篇
水利工程   207篇
石油天然气   718篇
武器工业   943篇
无线电   3825篇
一般工业技术   12696篇
冶金工业   5646篇
原子能技术   529篇
自动化技术   8372篇
  2024年   142篇
  2023年   1053篇
  2022年   1768篇
  2021年   2182篇
  2020年   2313篇
  2019年   1987篇
  2018年   1966篇
  2017年   2570篇
  2016年   2385篇
  2015年   2681篇
  2014年   3644篇
  2013年   4050篇
  2012年   4311篇
  2011年   5076篇
  2010年   3894篇
  2009年   4282篇
  2008年   3563篇
  2007年   4725篇
  2006年   4508篇
  2005年   3735篇
  2004年   3214篇
  2003年   2680篇
  2002年   2163篇
  2001年   2025篇
  2000年   1677篇
  1999年   1465篇
  1998年   1128篇
  1997年   1045篇
  1996年   992篇
  1995年   817篇
  1994年   719篇
  1993年   537篇
  1992年   472篇
  1991年   345篇
  1990年   317篇
  1989年   245篇
  1988年   155篇
  1987年   74篇
  1986年   39篇
  1985年   28篇
  1984年   36篇
  1983年   28篇
  1982年   33篇
  1981年   26篇
  1980年   12篇
  1978年   15篇
  1977年   7篇
  1976年   11篇
  1975年   6篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This paper focuses on the configuration design of flexure hinges with a prescribed compliance matrix and preset rotational center position. A new method for the topology optimization of flexure hinges is proposed based on the adaptive spring model and stress constraint. The hinge optimization model is formulated by maximizing the bending displacement with a spring while optimizing the compliance matrix to a prescribed value. To avoid numerical instability, an artificial spring is used as an auxiliary calculation, and a new strategy is developed for adaptively adjusting the spring stiffness according to the prescribed compliance matrix. The maximum stress of flexure hinge is limited by using a normalized P-norm of the effective von Mises stress, and a position constraint of rotational center is proposed to predetermine the position of the rotational center. In addition, to reduce the error of the stress measurement, a simple but effective filtering method is presented to obtain a complete black-and-white design. Numerical examples are used to verify the proposed method. Topology results show that the obtained flexure hinges have the prescribed compliance matrix and preset rotational center position while also meeting the stress requirements.  相似文献   
2.
The aim of this study was to determine the influence of severe plastic deformation processing and the changes in microstructure resulting therefrom on the corrosion resistance of an Al–Mg–Si alloy. The alloy was processed using incremental equal channel angular pressing, which caused a reduction in grain size from 15 to 0.9 µm. The grain refinement was accompanied by an increase in the number of grain boundaries and dislocations, and by changes in grain orientation. However, there was no change in the size and number of intermetallic particles, which presumably resulted in a constant number of galvanic couplings. Electrochemical experiments revealed only slight differences between the samples before and after processing. Higher potential transients/oscillations upon immersion and increased corrosion currents in the vicinity of corrosion potential point to slightly higher reactivity of the most refined material. This indicates that intermetallic particles are the most crucial microstructural elements in terms of corrosion resistance. Their impact exceeds that of grain boundaries, in particular, at the stage of corrosion initiation. The development of corrosion attack is controlled more by the microstructure of the matrix as the grain refinement resulted in a less pronounced corrosion attack in comparison with the coarse-grained sample.  相似文献   
3.
It is urgently necessary to seek more simple and effective methods to construct superhydrophobic metal surfaces to improve the corrosion resistance and antifouling performance. Herein, a facile method for fabricating superhydrophobic aluminum alloy surface is developed via boiling water treatment and stearic acid modification. It is noteworthy that no prepolishing on aluminum alloy is required and no caustic reagents and typical equipments are used during the preparation procedure. Therefore, the fabrication method is quite a simple and environment-friendly technique. Both micro- and nano-scaled binary structure forms at the resultant aluminum alloy surface while long alkyl chains are grafted onto the rough aluminum alloy surface chemically. Consequently, the resultant aluminum alloy exhibits outstanding superhydrophobicity. More importantly, the superhydrophobicity has excellent universality, diversity, stability, excellent corrosion resistance, and antifouling performance. The facile preparation, excellent superhydrophobic durability, and outstanding performance are quite in favor of the practical application.  相似文献   
4.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
5.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
6.
The transient liquid phase (TLP) bonding of CoCuFeMnNi high entropy alloy (HEA) was studied. The TLP bonding was performed using AWS BNi-2 interlayer at 1050 °C with the TLP bonding time of 20, 60, 180 and 240 min. The effect of bonding time on the joint microstructure was characterized by SEM and EDS. Microstructural results confirmed that complete isothermal solidification occurred approximately at 240 min of bonding time. For samples bonded at 20, 60 and 180 min, athermal solidification zone was formed in the bonding area which included Cr-rich boride and Mn3Si intermetallic compound. For all samples, the γ solid solution was formed in the isothermal solidification zone of the bonding zone. To evaluate the effect of TLP bonding time on mechanical properties of joints, the shear strength and micro-hardness of joints were measured. The results indicated a decrement of micro-hardness in the bonding zone and an increment of micro-hardness in the adjacent zone of joints. The minimum and maximum values of shear strength were 100 and 180 MPa for joints with the bonding time of 20 and 240 min, respectively.  相似文献   
7.
To advance organ-on-a-chip development and other areas befitting from physiologically-relevant biomembranes,a microfluidic platform is presented for synthesis of biomembranes during gelation and investigation into their role as extracellular matrix supports.In this work,high-throughput studies of collagen,chitosan,and collagen-chitosan hybrid biomembranes were carried out to characterize and compare key properties as a function of the applied hydrodynamic conditions during gelation.Specifically,depending on the biopolymer material used,varying flow conditions during biomembrane gelation caused width,uniformity,and swelling ratio to be differently affected and controllable.Finally,cell viability studies of seeded fibroblasts were conducted,thus showing the potential for biological applications.  相似文献   
8.
The microstructure and chemical compositions of the solid solution-treated Mg-3Nd-1Li-0.2Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),electron probe micro-analyzer(EPMA)and X-ray photoelectron spectroscopy(XPS).The corrosion behaviour of the alloy was investigated via electrochemical polarization,electrochemical impedance spectroscopy(EIS),hydrogen evolution test and scanning Kelvin probe(SKP).The results showed that the microstructure of the as-extruded Mg-3Nd-1Li-0.2Zn alloy contained α-Mg matrix and nanometric second phase Mg41 Nd5.The grain size of the alloy increased significantly with the increase in the heat-treatment duration,whereas the volume fraction of the second phase decreased after the solid solution treatment.The surface film was composed of oxides(Nd2O3,MgO,Li2O and ZnO)and carbonates(MgCO3 and Li2CO3),in addition to Nd.The as-extruded alloy exhibited the best corrosion resistance after an initial soaking of 10 min,whereas the alloy with 4h-solution-treatment possessed the lowest corrosion rate after a longer immersion(1 h).This can be attributed to the formation of Nd-containing oxide film on the alloys and a dense corrosion product layer.The dealloying corrosion of the second phase was related to the anodic Mg41Nd5 with a more negative Volta potential relative to α-Mg phase.The preferential corrosion of Mg41Nd5 is proven by in-situ observation and SEM.The solid solution treatment of Mg-3Nd-1Li-0.2Zn alloy led to a shift in corrosion type from pitting corrosion to uniform corrosion under long-term exposure.  相似文献   
9.
In this study the effects of high temperature and moisture on the impact damage resistance and mechanical strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates were exposed to either a 1050°C isothermal furnace-based environment for 30 consecutive days at 6 h a day, or 95% relative humidity environment for 13 consecutive days at 67°C. Low velocity impact, tensile and short beam strength tests were performed on both ambient and environmentally conditioned laminates and damage was characterized using a combination of non-destructive and destructive techniques. High temperature and humidity environmental exposure adversely affected the impact resistance of the composite laminates. For all the environments, planar internal damage area was greater than the back side dent area, which in turn was greater than the impactor side dent area. Evidence of environmental embrittlement through a stiffer tensile response was noted for the high temperature exposed laminates while the short beam strength tests showed greater propensity for interlaminar shear failure in the moisture exposed laminates. Destructive evaluations exposed larger, more pronounced delaminations in the environmentally conditioned laminates in comparison to the ambient ones. External damage metrics of the impactor side dent depth and area directly influenced the post-impact tensile strength of the laminates while no such trend between internal damage area and residual strength could be ascertained.  相似文献   
10.
研究辊速差对连铸连轧7075铝板显微组织、织构及力学性能的影响。采用3种不同上辊/下辊转速比(ω/ω0,ω为上辊转速,ω0为下辊转速)1:1、1:1.2及1:1.4进行多次试验。结果显示,在最大辊速差条件下(ω/ω0=1:1.4),7075铝板在轧制方向的屈服强度和极限抗拉强度分别提高41.5%和21.9%。此外,当辊速比ω/ω0为1:1.4时,成品轧制板的平均晶粒尺寸减小36%,横剖面平均硬度增加约9.2%。织构研究结果显示,辊速差越大,成品各向同性及硬度越大。然而,采用不同辊速度的连铸连轧会导致变形板伸长率降低约6%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号