首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20086篇
  免费   1864篇
  国内免费   1192篇
电工技术   1451篇
综合类   1773篇
化学工业   876篇
金属工艺   1217篇
机械仪表   3390篇
建筑科学   1897篇
矿业工程   3017篇
能源动力   1736篇
轻工业   199篇
水利工程   2778篇
石油天然气   1402篇
武器工业   144篇
无线电   573篇
一般工业技术   994篇
冶金工业   756篇
原子能技术   152篇
自动化技术   787篇
  2024年   40篇
  2023年   336篇
  2022年   609篇
  2021年   732篇
  2020年   786篇
  2019年   593篇
  2018年   556篇
  2017年   588篇
  2016年   663篇
  2015年   786篇
  2014年   1294篇
  2013年   1170篇
  2012年   1886篇
  2011年   1738篇
  2010年   1202篇
  2009年   1156篇
  2008年   927篇
  2007年   1281篇
  2006年   1172篇
  2005年   993篇
  2004年   814篇
  2003年   752篇
  2002年   677篇
  2001年   531篇
  2000年   439篇
  1999年   291篇
  1998年   239篇
  1997年   187篇
  1996年   171篇
  1995年   141篇
  1994年   112篇
  1993年   70篇
  1992年   56篇
  1991年   35篇
  1990年   29篇
  1989年   35篇
  1988年   15篇
  1987年   15篇
  1986年   10篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1980年   1篇
  1979年   3篇
  1959年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The development of cost-effective bifunctional catalysts with excellent performance and good stability is of great significance for overall water splitting. In this work, NiFe layered double hydroxides (LDHs) nanosheets are prepared on nickel foam by hydrothermal method, and then Ni2P(O)–Fe2P(O)/CeOx nanosheets are in situ synthesized by electrodeposition and phosphating on NiFe LDHs. The obtained self-supporting Ni2P(O)–Fe2P(O)/CeOx exhibit excellent catalytic performances in alkaline solution due to more active sites and fast electron transport. When the current density is 10 mA cm?2, the overpotential of hydrogen evolution reaction and oxygen evolution reaction are 75 mV and 268 mV, respectively. In addition, driven by two Ni2P(O)–Fe2P(O)/CeOx electrodes, the alkaline battery can reach 1.45 V at 10 mA cm?2.  相似文献   
2.
Constructing efficient and stable bifunctional electrocatalysts for overall water splitting remains a challenge because of the sluggish reaction kinetics. Herein, the core-shell hybrids composed of Co(PO3)2 nanorod core and NiFe alloy shell in situ grown on nickel foam (NiFe/Co(PO3)2@NF) are synthesized. Owing to the hierarchical palm-leaf-like structures and strong adhesion between NiFe alloys, Co(PO3)2 and substrates, the catalyst provides a large surface area and rapid charge transfer, which facilitates active sites exposure and conductivity enhancement. The interfacial effect in the NiFe/Co(PO3)2 core-shell structure modulates the electronic structure of the active sites around the boundary, thereby boosting the intrinsic activity. Benefiting from the stable structure, the durability of the catalyst is not impaired by the inevitable surface reconfiguration. The NiFe/Co(PO3)2@NF electrode presents a low cell voltage of 1.63 V to achieve 10 mA cm?2 and manifests durability for up to 36 h at different current densities.  相似文献   
3.
Surface reconstruction produces metal oxyhydroxide (1OOH) active sites, and promoting surface reconstruction is essential for the design of OER electrocatalysts. In this paper, we reported that a large amount of active NiFeOOH was generated in-situ on the surface of nickel-iron sulfide selenide, thus exposing more active sites and efficiently catalyzing OER. In 1 M KOH solution, NiFeOOH(S,Se) achieves an ultra-low overpotential of 195 mV at the current density of 10 mA cm?2, and the Tafel slope is only 31.99 mV dec?1, showing excellent catalytic performance. When the current density is 100  mA cm?2, the over-potential of NiFeOOH(S,Se) in KOH + seawater solution is 239 mV, which is almost equivalent to 231 mV in KOH solution. The excellent OER stability of the NiFeOOH(S,Se) catalyst in alkaline electrolytes was confirmed, and the overpotential did not change significantly after 4 days of testing in KOH + seawater solution.  相似文献   
4.
Photocatalytic water splitting has become a promising technology to solve environmental pollution and energy shortage. Exploring stable and efficient photocatalysts are highly desired. Herein, we propose novel low-dimensional InSbS3 semiconductors with good stability based on density functional theory. Such InSbS3 structures could be obtained from their bulk crystal by suitable exfoliation methods. Our calculations indicate that two-dimensional (2D) and one-dimensional (1D) InSbS3 nanostructures have moderate band gaps (2.54 and 1.97 eV, respectively) and suitable band edge alignments, which represents sufficient redox capacity for photocatalytic water splitting. 2D InSbS3 monolayer possesses oxygen evolution reaction (OER) activity and 1D InSbS3 single-nanochain possesses hydrogen evolution reaction (HER) activity under acidic conditions. Interestingly, two edge electron states can be introduced when the dimension of InSbS3 is reduced from 2D to 1D and the new electron states can exist in arbitrary-width nanoribbons, which can effectively promote the process of HER. Moreover, InSbS3 monolayer and single-nanochain also exhibit large solar-to-hydrogen efficiency, high carrier mobility, and excellent optical absorption properties, which can facilitate the process of photocatalytic reactions. Our findings can stimulate the synthesis and applications of low-dimensional InSbS3 semiconductors for overall water splitting.  相似文献   
5.
Metal/carbon composite materials are highly promising electrocatalysts for water electrolysis. In this work, three composites of metal cobalt nanoparticles highly dispersed in N-doped carbon materials were facilely constructed by pyrolysis of different phenylenediamine based Schiff base-Co complexes (PDBs). Interestingly, the composites derived from PDBs based on different phenylenediamine exhibited different morphologies. The superior case is that rodlike composite catalyst was derived from o-phenylenediamine based PDBs. The obtained catalyst exhibited remarkable performances for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER), as well as overall water electrolysis. Only 172 and 289 mV of overpotentials and 1.57 V of cell voltage were exhibited at 10 mA cm?2 for HER, OER and water splitting in 1.0 M KOH, respectively. The catalyst also displayed robust stability and high Faraday efficiency, and thus are potential high-performance catalyst for commercial water electrolysis.  相似文献   
6.
Seawater is the most abundant resource on earth, so developing cost-effective, highly durable corrosion resistance and efficient electrocatalysts are crucial to enhance seawater splitting. Herein, we prepared 3D bristlegrass-like Co-doped Ni2P (Co-Ni2P) composites supported on Ni foam (NF) through a facile solvothermal method combined and a subsequent phosphatization treatment. Benefiting from the unique structure, Co-Ni2P shows excellent electrocatalytic activity as an electrode material for both the hydrogen evolution reaction (HER, low overpotential of 116 mV at 50 mA cm?2) and oxygen evolution reaction (OER, low overpotential of 266 mV at 50 mA cm?2). Moreover, the as-prepared Co-Ni2P composites exhibit excellent stability and corrosion resistance in an alkaline medium. Density functional theory (DFT) calculations were employed to evaluate the H1 adsorption of Co-Ni2P, and the results proved the high catalytic activity for the HER. This study provides new materials with a unique morphology for overall water splitting.  相似文献   
7.
本文简介多功能液压支架拖运车的电控系统,包括电控箱的设计和主要电气元件的性能和选择依据。此电控系统能够一般电控系统的各种功能和保护,而且能够通过摄像头做到操作盲区和使用遥控器进行远程控制,从而提高液压支架的拖运效率、降低劳动强度和提高安全保障。  相似文献   
8.
In-situ LA-ICP-MS and S isotopes of pyrite from the Baoshan Cu polymetallic deposit were conducted to investigate the ore-forming process and the enrichment mechanism of elements. Three generations of pyrite (Py I, Py II, and Py III) in the skarn-type ores and pyrite in the carbonate-hosted sulfide ores from central, western, and northern (C_Py, W_Py, and N_Py) mining districts are selected for comparison. Compared with Py I and Py III, the contents of most elements in Py II are apparently higher. The As and Se contents are high within a wide range and are decoupled in the growth band of the C_Py. The highest As, Se, and Pb contents were found in W_Py and N_Py. These results indicate the drastic changes in the temperature and fluid mixing during the mineralization. The occurrence of fluctuation and change in temperature and f(O2) was triggered by intermittent pulses of magmatic-hydrothermal fluids, mixing with meteoric water, and water−rock interactions. The sulfur isotopes of all species of pyrite indicated the magmatic source. The change in the f(O2) conditions caused slight differences in the sulfur isotope compositions. Consequently, a metallogenic model was proposed to explain the ore-forming processes.  相似文献   
9.
In this study, the hydraulic reactivity and cement formation of baghdadite (Ca3ZrSi2O9) was investigated. The material was synthesized by sintering a mixture of CaCO3, SiO2, and ZrO2 and then mechanically activated using a planetary mill. This leads to a decrease in particle and crystallite size and a partial amorphization of baghdadite as shown by X-ray powder diffraction (XRD) and laser diffraction measurements. Baghdadite cements were formed by the addition of water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were found to be ~2 MPa after 3-day setting for a 24-h ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of set cements with a preferred dissolution of calcium and only marginal release of zirconium ions. Cement formation occurs under alkaline conditions, whereas the unground raw powder leads to a pH of 11.9 during setting, while prolonged grinding increased pH values to approximately 12.3.  相似文献   
10.
The NASICON type solid electrolyte LATP is a promising candidate for all-solid-state Li-ion batteries considering energy density and safety aspects. To ensure the performance and reliability of batteries, crack initiation and propagation within the electrolyte need to be suppressed, which requires knowledge of the fracture characteristics. In the current work, micro-pillar splitting was applied to determine the fracture toughness of LATP material for different grain orientations. The results are compared with data obtained using a conventional Vickers indentation fracture (VIF) approach. The fracture toughness obtained via micro-pillar splitting test is 0.89 ± 0.13 MPa?m1/2, which is comparable to the VIF result, and grain orientation has no significant effect on the intrinsic fracture toughness. Being a brittle ceramic material, the effect of pre-existing defects on the toughness needs to be considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号