首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5524篇
  免费   698篇
  国内免费   976篇
电工技术   205篇
综合类   398篇
化学工业   407篇
金属工艺   916篇
机械仪表   279篇
建筑科学   70篇
矿业工程   143篇
能源动力   68篇
轻工业   77篇
水利工程   10篇
石油天然气   58篇
武器工业   107篇
无线电   2360篇
一般工业技术   1370篇
冶金工业   339篇
原子能技术   69篇
自动化技术   322篇
  2024年   21篇
  2023年   63篇
  2022年   134篇
  2021年   172篇
  2020年   218篇
  2019年   222篇
  2018年   173篇
  2017年   228篇
  2016年   219篇
  2015年   182篇
  2014年   315篇
  2013年   394篇
  2012年   370篇
  2011年   441篇
  2010年   351篇
  2009年   396篇
  2008年   333篇
  2007年   453篇
  2006年   395篇
  2005年   335篇
  2004年   302篇
  2003年   244篇
  2002年   211篇
  2001年   166篇
  2000年   161篇
  1999年   100篇
  1998年   85篇
  1997年   83篇
  1996年   79篇
  1995年   66篇
  1994年   51篇
  1993年   47篇
  1992年   46篇
  1991年   37篇
  1990年   36篇
  1989年   26篇
  1988年   16篇
  1987年   9篇
  1986年   3篇
  1984年   6篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1964年   1篇
排序方式: 共有7198条查询结果,搜索用时 15 毫秒
1.
For the purpose of developing biodegradable magnesium alloys with suitable properties for biomedical applications, Mg–Zn–Ca–Cu metallic glasses were prepared by copper mold injection methods. In the present work, the effect of Cu doping on mechanical properties, corrosion behavior, and glass-forming ability of Mg66Zn30Ca4 alloy was studied. The experimental findings demonstrated that the incorporation of Cu decreases the corrosion resistance of alloys, but increases the microhardness and degradation rate slightly. However, the addition of a trace amount of Cu can make the samples have antibacterial properties. Therefore, Mg–Zn–Ca–Cu has great advantages in clinical implantation and is the potential implant material.  相似文献   
2.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
3.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.  相似文献   
4.
电子回旋共振(ECR)质子源具有可给流强高、亮度高、可靠性高、使用频率高、易维护、小型化等优点,因而被硼中子俘获治疗(BNCT)装置的直线加速器所采用。本文利用CST软件对2.45 GHz ECR质子源进行优化设计。优化后ECR质子源的等离子体发生器腔体的尺寸为101.12 mm×45.00 mm,给出了脊波导耦合器的最优尺寸参数,使等离子体发生器腔体内电场强度提高为普通波导的4.5倍。通过Opera-3D对ECR质子源的引出电极结构进行了仿真计算,并给出了优化参数。另外,初步设计了质子源的线圈磁铁系统,优化了磁场分布。本文结果为质子源的研制提供了数据。  相似文献   
5.
A flower‐shaped ultra‐wideband fractal antenna is presented. It comprises a fourth iterative flower‐shaped radiator, asymmetrical stub‐loaded feeding line, and coplanar quarter elliptical ground planes. A wide operating band of 12.12 GHz (4.58‐16.7 GHz) for S 11 ≤ ? 10 dB is achieved along with an overall antenna footprint of 15.7 × 11.4 mm2. In addition, other desirable characteristics, that is, omnidirectional radiation patterns, peak gain upto 5 dB, and fidelity factor more than 75% are achieved. A good agreement exists between the simulation and measured results. The obtained results illustrate that this antenna has wide operating range and compact dimensions than available structures.  相似文献   
6.
The aim of this study was to investigate the structure and corrosion resistance of amorphous, amorphous‐crystalline, and crystalline Mg67Zn29Ca4 alloy for biodegradable applications. This paper presents a preparation method and results of the structural characterization and corrosion resistance analysis of the material. Samples were prepared in the form of 3 mm diameter rods. The structure of the alloy was examined with the use of X‐ray diffractometry and scanning electron microscopy. The thermal properties of the samples were examined with differential scanning calorimetry (DSC). Results of DSC analysis were used to determine heat treatment temperatures, allowing to obtain different fractures of crystalline phase in the material. Corrosion resistance of heat‐treated samples was investigated by immersion tests and electrochemical measurements performed in the simulated body fluid. The X‐ray diffraction results confirmed that the prepared Mg67Zn29Ca4 alloy's structure is fully amorphous. After heat treatment, samples with different fractions of amorphous phase in the structure were obtained. Immersion tests of the samples showed that the structure significantly influenced corrosion resistance in examined materials. It should be pointed out, that certain amounts of crystalline phase in amorphous matrix can greatly improve the corrosion resistance of Mg67Zn29Ca4 alloy.  相似文献   
7.
8.
Xu Mao 《热应力杂志》2019,42(3):374-387
The coupled thermal-mechanical response of a polycrystalline metallic film in response to ultrafast optical impingement is investigated. The thermo-elastodynamics formulated in the article considers laser absorption along the axial direction and thermal diffusion along the radial direction to account for the normal and shear stresses initiated by the rapid heating. The generalized formulation incorporates a two-step hyperbolic temperature model that characterizes the energy transport of electrons and lattices as finite in velocity. The coupling of thermal and mechanical fields is established through considering the energy dissipated in the form of propagating thermo-mechanical disturbances. The thermo-elastodynamical response of the polycrystalline film is found to be a strong function of the electron heat capacity that is also temperature-dependent. In addition, grain size effects due to film surface and grain-boundary scatterings are found to impact several thermophysical properties of the material. The impact of the energy transport of electrons is particularly prominent when the thickness becomes comparable with the electron mean-free-path. A staggered-grid finite difference scheme is followed to simultaneously resolve the coupled thermo-elastodynamical responses using an axisymmetric model. The time variation of the normalized electron temperature of a single crystalline gold film derived from the generalized model is favorably examined against published physical data, thus demonstrating the feasibility of the formulation in depicting the electron transport dynamics in response to non-ablating ultrafast irradiation.  相似文献   
9.
Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion equation considering both cyclotron resonance and Cherenkov resonance in a staggered double metallic grating traveling wave tube is deduced. Through the reasonable selection for geometric and electrical parameters, the numerical calculation and analysis of the ‘hot’ dispersion equation shows that the beam–wave interaction gain and frequency band with the cyclotron resonance enhancement effect are higher than those with only Cherenkov resonance radiation.  相似文献   
10.
针对硅光子集成回路缺少实用化光源的问题,提出了一种1.55μm波段InP基FP激光器芯片、InP基PIN光电探测器芯片与硅光波导芯片集成模块的设计与制备方法。使用CMOS工艺兼容的硅光无源器件制备工艺,设计并制备了倒拉锥型端面耦合器,与锥形透镜光纤耦合效率为36.7%。采用微组装对准技术将激光器芯片与硅波导芯片耦合、UV固化胶固化后耦合效率为35.8%,1 dB耦合对准容差横向为1.2μm,纵向为0.95μm。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号