首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259346篇
  免费   20557篇
  国内免费   13000篇
电工技术   16604篇
技术理论   51篇
综合类   36120篇
化学工业   28352篇
金属工艺   10319篇
机械仪表   14080篇
建筑科学   37140篇
矿业工程   14678篇
能源动力   7836篇
轻工业   14018篇
水利工程   13884篇
石油天然气   10893篇
武器工业   2489篇
无线电   16480篇
一般工业技术   18636篇
冶金工业   15241篇
原子能技术   2627篇
自动化技术   33455篇
  2024年   352篇
  2023年   2317篇
  2022年   4359篇
  2021年   5599篇
  2020年   5908篇
  2019年   4943篇
  2018年   4655篇
  2017年   5605篇
  2016年   6849篇
  2015年   7703篇
  2014年   14420篇
  2013年   13164篇
  2012年   17247篇
  2011年   18529篇
  2010年   14615篇
  2009年   15322篇
  2008年   14359篇
  2007年   18781篇
  2006年   17852篇
  2005年   15617篇
  2004年   13304篇
  2003年   12006篇
  2002年   9881篇
  2001年   8340篇
  2000年   6954篇
  1999年   5648篇
  1998年   4262篇
  1997年   3738篇
  1996年   3521篇
  1995年   3014篇
  1994年   2685篇
  1993年   2010篇
  1992年   1772篇
  1991年   1324篇
  1990年   1158篇
  1989年   1018篇
  1988年   819篇
  1987年   560篇
  1986年   415篇
  1985年   352篇
  1984年   329篇
  1983年   240篇
  1982年   215篇
  1981年   165篇
  1980年   130篇
  1979年   110篇
  1978年   62篇
  1977年   72篇
  1976年   55篇
  1975年   55篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
2.
Calorie restriction (CR) is the most efficacious treatment to delay the onset of age-related changes such as mitochondrial dysfunction. However, the sensitivity of mitochondrial markers to CR and the age-related boundaries of CR efficacy are not fully elucidated. We used liver samples from ad libitum-fed (AL) rats divided in: 18-month-old (AL-18), 28-month-old (AL-28), and 32-month-old (AL-32) groups, and from CR-treated (CR) 28-month-old (CR-28) and 32-month-old (CR-32) counterparts to assay the effect of CR on several mitochondrial markers. The age-related decreases in citrate synthase activity, in TFAM, MFN2, and DRP1 protein amounts and in the mtDNA content in the AL-28 group were prevented in CR-28 counterparts. Accordingly, CR reduced oxidative mtDNA damage assessed through the incidence of oxidized purines at specific mtDNA regions in CR-28 animals. These findings support the anti-aging effect of CR up to 28 months. Conversely, the protein amounts of LonP1, Cyt c, OGG1, and APE1 and the 4.8 Kb mtDNA deletion content were not affected in CR-28 rats. The absence of significant differences between the AL-32 values and the CR-32 counterparts suggests an age-related boundary of CR efficacy at this age. However, this only partially curtails the CR benefits in counteracting the generalized aging decline and the related mitochondrial involvement.  相似文献   
3.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   
4.
《Ceramics International》2021,47(24):34278-34288
Materials exhibiting colossal dielectric constant are the most sought-after materials due to their variety of applications in various electronics industries. NiFe2O4 and LaFeO3 belonging to the spinel and perovskite structures, respectively, were coupled into a nanocomposite by adapting a one-pot sol-gel synthesis. The ratio of NiFe2O4:LaFeO3 was varied and the synthesized materials were studied for their dielectric behaviors. Interestingly, among the samples studied, the nanocomposite with the ratio of 1:2 of NiFe2O4–LaFeO3 exhibited a high dielectric constant value of 10390 at a frequency of 1 kHz with a several-fold increase in conductivity. The high conductivity resulted in a high dielectric loss. The origin of such a high dielectric constant and loss have been attributed to the Maxwell-Wagner type space charge polarization arising from the microstructure that consists of large and continuous grain boundaries, and the conducting phase at the interface, respectively.  相似文献   
5.
Background: Recently, it was reported that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL and was shown to compete with RANK to bind RANKL and suppress canonical RANK signaling during osteoclast differentiation. The critical role of the protein triad RANK–RANKL in osteoclastogenesis has made their binding an important target for the development of drugs against osteoporosis. In this study, point-mutations were introduced in the RANKL protein based on the crystal structure of the RANKL complex and its counterpart receptor RANK, and we investigated whether LGR4 signaling in the absence of the RANK signal could lead to the inhibition of osteoclastogenesis.; Methods: The effects of point-mutated RANKL (mRANKL-MT) on osteoclastogenesis were assessed by tartrate-resistant acid phosphatase (TRAP), resorption pit formation, quantitative real-time polymerase chain reaction (qPCR), western blot, NFATc1 nuclear translocation, micro-CT and histomorphological assay in wild type RANKL (mRANKL-WT)-induced in vitro and in vivo experimental mice model. Results: As a proof of concept, treatment with the mutant RANKL led to the stimulation of GSK-3β phosphorylation, as well as the inhibition of NFATc1 translocation, mRNA expression of TRAP and OSCAR, TRAP activity, and bone resorption, in RANKL-induced mouse models; and Conclusions: The results of our study demonstrate that the mutant RANKL can be used as a therapeutic agent for osteoporosis by inhibiting RANKL-induced osteoclastogenesis via comparative inhibition of RANKL. Moreover, the mutant RANKL was found to lack the toxic side effects of most osteoporosis treatments.  相似文献   
6.
In this study, we report the three-point flexural strength and fracture toughness of monolithic hafnium carbide up to 2000 °C. HfC with different grain sizes was consolidated using the spark plasma sintering method. Coarse-grained monoliths showed a weak dependence on the strain rate during high-temperature tests at 1600 °C–2000 °C. In contrast, results for the ceramics with a grain size below 20 μm indicated a positive dependence of the yield strength vs strain rate. This allowed us to identify the activation energy for high-temperature deformation in flexure as 370 kJ/mol. This level of activation energy is in satisfactory agreement with reports about the diffusion of C in hafnium carbide.  相似文献   
7.
Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were prepared by the conventional solid-state reaction method. The phase composition, sintering characteristics, microstructure and dielectric properties of Ti4+ replacement by Nb5+ in the formed solid solution Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were systematically studied. The structural variations and influence of Nb5+ doping in Mg(Ti1-xNbx)O3 were also systematically investigated by X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction and its Rietveld refinement results confirmed that Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics crystallised into an ilmenite-type with R-3 (148) space group. The replacement of the low valence Ti4+ by the high valence Nb5+ can improve the dielectric properties of Mg(Ti1-xNbx)O3 (x = 0–0.09). This paper also studied the different sintering temperatures for Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics. The obtained results proved that 1350 °C is the best sintering temperature. The permittivity and Q × f initially increased and then decreased mainly due to the effects of porosity caused by the sintering temperature and the doping amount of Nb2O5, respectively. Furthermore, the increased Q × f is correlated to the increase in Ti–O bond strength as confirmed by Raman spectroscopy, and the electrons generated by the oxygen vacancies will be compensated by Nb5+ to a certain extent to suppress Ti4+ to Ti3+, which was confirmed by XPS. The increase in τf from ?47 ppm/°C to ?40.1 ppm/°C is due to the increment in cell polarisability. Another reason for the increased τf is the reduction in the distortion degree of the [TiO6] octahedral, which was also confirmed by Raman spectroscopy. Mg(Ti0.95Nb0.05)O3 ceramics sintered at 1350 °C for 2 h possessed excellent microwave dielectric properties of εr = 18.12, Q × f = 163618 GHz and τf = ?40.1 ppm/°C.  相似文献   
8.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
9.
Spinal muscular atrophy (SMA) is an autosomal recessive hereditary neuromuscular disease. Exon 7 and 8 of survival of motor neuron 1 (SMN1) gene or only exon 7 homology deletion leads to the failure to produce a full-length SMN gene. The copy number of SMN2 gene with high homology of SMN1 affects the degree of disease and was the target gene for targeting therapy, in which splicing silencer in intron 7 was the key to suppress the inclusion of exon 7. In this study, we projected to use CRISPR/Case 9 for the targeted editing of intronic-splicing silencer (ISS) sequence to promote the inclusion of SMN2 exon 7 and increase the production of SMN2 full-length (FL) gene expression. It happens that there was a protospacer adjacent motif (PAM) at one end of the ISS sequence according to the design of sgRNA. The recombinant vector of sgRNA HSMN2 CRISPR/Case 9 was constructed and transfected into HEK293 cells. Sequencing results showed that the ISS sequence could be edited accurately and targeting in the predicted direction, in which deleting small fragments, inserting small amounts and mutation. Quantitative analysis of RT-PCR products by restriction enzyme of DdeI digestion showed that the FL of SMN2 increased by 8% (P < 0.05). In the primary cultured chondrocytes of SMA mice, in which sgRNA HSMN2 CRISPR/Case9 recombinant vector transfection could increase the SMN2 FL gene by 23% (P < 0.05) and significantly improve SMN protein levels (P < 0.05). CRISPR/Case 9 is an effective tool for gene editing and therapy of hereditary diseases, but it is rarely reported in the treatment of SMA diseases. This study shows that CRISPR/Case 9 was first used for the precision target of ISS sequence editing, which can effectively promote the production of SMN2 FL gene expressions, in which there was an important clinical reference value.  相似文献   
10.
为了克服超声造影剂中微米级气泡尺寸较大的局限性,大量研究人员对超声应用的替代造影剂(纳米级造影剂)进行了研究。随着生物纳米技术的飞速发展,纳米级超声造影剂在诊断与治疗领域有着广阔的发展前景。与超声造影剂中的微米级气泡相比,纳米级造影剂粒径较小,渗透能力极强,可以通过血管内皮间隙,进而可以实现血管外病变部位的显影。文中详细论述了超声造影剂在超声作用下的行为以及2种主要的纳米级造影剂:纳米气泡和纳米液滴造影剂,对其理论研究进展进行了总结,并提出了目前仍存在的一些问题及其未来的研究方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号