首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383901篇
  免费   3746篇
  国内免费   757篇
电工技术   6525篇
综合类   325篇
化学工业   56197篇
金属工艺   21936篇
机械仪表   14441篇
建筑科学   7495篇
矿业工程   3935篇
能源动力   7426篇
轻工业   20929篇
水利工程   5793篇
石油天然气   13900篇
武器工业   31篇
无线电   37528篇
一般工业技术   87369篇
冶金工业   60479篇
原子能技术   11732篇
自动化技术   32363篇
  2021年   3052篇
  2019年   3093篇
  2018年   11724篇
  2017年   12101篇
  2016年   9913篇
  2015年   3836篇
  2014年   6013篇
  2013年   13777篇
  2012年   10758篇
  2011年   17286篇
  2010年   15059篇
  2009年   15032篇
  2008年   15314篇
  2007年   16661篇
  2006年   8899篇
  2005年   10382篇
  2004年   8950篇
  2003年   8612篇
  2002年   7382篇
  2001年   6962篇
  2000年   6597篇
  1999年   6534篇
  1998年   15895篇
  1997年   11313篇
  1996年   8450篇
  1995年   6577篇
  1994年   5789篇
  1993年   6059篇
  1992年   4713篇
  1991年   4680篇
  1990年   4642篇
  1989年   4502篇
  1988年   4524篇
  1987年   4043篇
  1986年   4163篇
  1985年   4458篇
  1984年   4253篇
  1983年   4056篇
  1982年   3689篇
  1981年   3867篇
  1980年   3793篇
  1979年   3975篇
  1978年   4091篇
  1977年   4251篇
  1976年   5229篇
  1975年   3758篇
  1974年   3705篇
  1973年   3803篇
  1972年   3458篇
  1971年   3106篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Cell encapsulation within hydrogel droplets is transforming what is feasible in multiple fields of biomedical science such as tissue engineering and regenerative medicine, in vitro modeling, and cell-based therapies. Recent advances have allowed researchers to miniaturize material encapsulation complexes down to single-cell scales, where each complex, termed a single-cell microgel, contains only one cell surrounded by a hydrogel matrix while remaining <100 μm in size. With this achievement, studies requiring single-cell resolution are now possible, similar to those done using liquid droplet encapsulation. Of particular note, applications involving long-term in vitro cultures, modular bioinks, high-throughput screenings, and formation of 3D cellular microenvironments can be tuned independently to suit the needs of individual cells and experimental goals. In this progress report, an overview of established materials and techniques used to fabricate single-cell microgels, as well as insight into potential alternatives is provided. This focused review is concluded by discussing applications that have already benefited from single-cell microgel technologies, as well as prospective applications on the cusp of achieving important new capabilities.  相似文献   
2.
Atomic Energy - The physical aspects and main results of reactor tests of a two-stage core consisting of fresh fuel assemblies and a significant number of fuel assemblies from the previous core,...  相似文献   
3.
Journal of Communications Technology and Electronics - An option of multicriteria collision risk ranking of aircraft by data from an onboard radar station (OBRS) is proposed. This method can be...  相似文献   
4.
Protection of Metals and Physical Chemistry of Surfaces - Impedance spectroscopy was used to study the adsorption of the IFKhAN-92 inhibitor, a triazole derivative, on cathodically polarized...  相似文献   
5.
Combustion, Explosion, and Shock Waves - This paper touches upon the effect of a polyvinyl butyral content (0–2.3%) on&nbsp;the&nbsp;combustion of a Ti&nbsp;+&nbsp;C granular...  相似文献   
6.
The effect of dry and wet ball milling of LiFe5O8 ferrite powder on the microstructure and electromagnetic properties of ferrite ceramics was studied using XRD analysis, scanning electron microscopy, dilatometry, thermogravimetry, calorimetry, and measurement of specific magnetization and electrical resistance. The sintering temperature was 1050 °C; the sintering time was 2 h. It was found that ferrite fabricated from dry-milled powder exhibits an ordered α-LiFe5O8 phase with bulk density of 91%. Its saturation magnetization and Curie temperature are 55 emu/g and 628°С, respectively. Specific electrical resistance is 4?106 Ω cm. Wet milling in isopropyl alcohol causes formation of a disordered β-LiFe5O8 phase. Ceramics produced by this method shows higher bulk density (97%) and low porosity, and an order of magnitude lower resistivity. Its saturation magnetization and Curie temperature are 51 emu/g and 607°С, respectively.  相似文献   
7.
A detailed study of butyl rubber-based vibration damping formulations linking their composition, morphology, phase structure, viscosity, mechanical loss factor, and other characteristics is presented for the first time. High performance of the compositions including aromatic petroleum oil is explained by limited solubility of the plasticizer that leads to the formation of a highly-viscous emulsion (η20°C ≈ 1000 Pa·s) consisting of a swollen butyl rubber matrix and dispersed oil droplets in the broad composition range. Chalk is found to be the best inorganic filler as its spherical particles provide strong adhesion to the reinforcing layer of aluminum foil. Aiming to eliminate ecologically unfriendly aromatic compounds, a new low-cost binding agent formulation based on butyl rubber mixed with polyisobutylene and highly refined mineral oil is suggested. Being environmentally safe, it possesses high viscosity of 1000–3000 Pa·s, cohesion strength of 3.5–5.0 N/cm, penetration of 4.5–6.0 mm, and mechanical loss factor up to 0.34 at room temperature, which are as good as, or even better than, the properties of currently produced vibration damping materials containing aromatic compounds. New materials can be used in car and aircraft parts for effective vibration isolation.  相似文献   
8.
The interactions of amino acids and peptides at model membrane interfaces have considerable implications for biological functions, with the ability to act as chemical messengers, hormones, neurotransmitters, and even as antibiotics and anticancer agents. In this study, glycine and the short glycine peptides diglycine, triglycine, and tetraglycine are studied with regards to their interactions at the model membrane interface of Aerosol-OT (AOT) reverse micelles via 1H NMR spectroscopy, dynamic light scattering (DLS), and Langmuir trough measurements. It was found that with the exception of monomeric glycine, the peptides prefer to associate between the interface and bulk water pool of the reverse micelle. Monomeric glycine, however, resides with the N-terminus in the ordered interstitial water (stern layer) and the C-terminus located in the bulk water pool of the reverse micelle.  相似文献   
9.
Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism’s nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.  相似文献   
10.
In the current study two different batches of X7R-0603 BME-MLCCs displayed dissimilar electrical performance, despite having the same chemical composition, tape casting, and sintering conditions; with the only difference between them being the ore deposits where the raw materials were extracted from to synthesize the BaTiO3. Specifically, they presented different electrical response to highly accelerated life tests (HALT). Although the chemical analysis of each slip showed the same composition, the trace elements of the BaTiO3 sources could have acted as dopants or produced different secondary phases. A search for precipitates in the two samples was conducted by means of Scanning (SEM) and Transmission Electron Microscopy (TEM) techniques. SEM observations confirmed the presence of precipitates formed within the structure of the MLCCs exhibiting the greatest decrement in their electrical resistance results during the HALT. In order to further characterize the observed precipitates, samples were prepared by Focused Ion Beam (FIB) lift-out method, to make TEM characterization of specific precipitates feasible. TEM studies were performed on the precipitates to obtain electron diffraction patterns and complementary Energy Dispersive X-Ray Spectroscopy (EDXS) chemical analysis. Based on the crystal and chemical data obtained, it can be concluded that the precipitates are a hexagonal anhydrous silicate oxyapatite phase with a stoichiometry of Ca3Y16Si10O13, and lattice parameters of a = 0.9353 nm and c = 0.6970 nm; this phase was not found in the JCPDS data base. Differences in raw materials coming from different ore deposits can produce undesired precipitates that affect the electrical performance of MLCCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号