首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43633篇
  免费   6046篇
  国内免费   4141篇
电工技术   4711篇
技术理论   1篇
综合类   5189篇
化学工业   2160篇
金属工艺   1618篇
机械仪表   6089篇
建筑科学   4467篇
矿业工程   1953篇
能源动力   1145篇
轻工业   1359篇
水利工程   1696篇
石油天然气   1640篇
武器工业   846篇
无线电   6799篇
一般工业技术   4188篇
冶金工业   1654篇
原子能技术   898篇
自动化技术   7407篇
  2024年   569篇
  2023年   2204篇
  2022年   2044篇
  2021年   2427篇
  2020年   2229篇
  2019年   2441篇
  2018年   1361篇
  2017年   1794篇
  2016年   1932篇
  2015年   2188篇
  2014年   3130篇
  2013年   2461篇
  2012年   2917篇
  2011年   2700篇
  2010年   2467篇
  2009年   2466篇
  2008年   2754篇
  2007年   2488篇
  2006年   1955篇
  2005年   1773篇
  2004年   1643篇
  2003年   1287篇
  2002年   1118篇
  2001年   940篇
  2000年   739篇
  1999年   612篇
  1998年   473篇
  1997年   501篇
  1996年   441篇
  1995年   330篇
  1994年   301篇
  1993年   218篇
  1992年   207篇
  1991年   194篇
  1990年   163篇
  1989年   186篇
  1988年   56篇
  1987年   31篇
  1986年   12篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   28篇
  1981年   13篇
  1980年   3篇
  1979年   6篇
  1975年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
1.
王喆  梁杰  侯腾飞  魏永超 《煤炭学报》2022,(6):2270-2278
煤炭地下气化是煤炭无害化开采技术创新战略方向之一,该技术可以回收老矿井废弃煤炭资源,对传统采煤技术难以开采的煤炭资源进行原位清洁转化。气化过程中燃空区形成带来的结构应力和高温造成的热应力共同作用对岩石造成损伤。以大城勘查区深部煤层为气化对象,得出典型围岩热物性及力学参数随温度变化规律。基于连续损伤力学理论,在平滑Rankine损伤模型的基础上提出高温岩石损伤变量模型,使用COMSOL Multiphysics多物理场耦合软件对深部煤层地下气化过程围岩温度、主应力、损伤变量进行模拟研究。结果表明,5种典型岩石的比热容随温度升高整体呈上升趋势,导热系数随温度升高整体呈下降趋势,抗压强度和弹性模量随温度变化规律差别较大。围岩受温度影响范围随气化时间呈指数变化,气化10 d时,温度影响范围仅为3.27 m;气化50 d时,温度影响范围达到5.73 m;气化100 d时,温度影响范围为8.21 m;气化400 d时,温度影响范围达到18.20 m。结合地下气化过程中普遍采用的控制注气点后退气化法,岩石处于高温区的时间在40 d左右,温度场对围岩的影响范围约为4.7 m。燃空区上方及两端均出现损伤...  相似文献   
2.
基于铌酸锂(LN)薄膜的横向激发体声波谐振器(XBAR)能够兼具大机电耦合系数(K2)和高谐振频率(f)特性,有望满足5G应用的频段要求。然而,常规LN薄膜单层XBAR结构的温度稳定性较差,频率温度系数(TCF)较低。该文提出一种具有SiO2温度补偿层的SiO2/LN双层结构XBAR,并建立了精确分析层状结构XBAR的有限元模型。理论分析表明,该双层结构XBAR上激励的主模式是一阶反对称(A1)兰姆波。通过合理优化结构参数配置,能够获得高谐振频率(f~4.75 GHz)和大机电耦合系数(K2~8%),同时其温度稳定性也得到显著改善(TCF~-36.1×10-6/℃),相较于单层XBAR结构提高了近70×10-6/℃,这为研制温补型高频、大带宽声学滤波器提供了理论基础。  相似文献   
3.
4.

该文基于掺钪AlN薄膜制备了高次谐波体声波谐振器(HBAR),研究了钪(Sc)掺杂浓度对AlN压电薄膜材料特性及器件性能的影响。研究表明,当掺入Sc的摩尔分数从0增加到25%时,压电应力系数e33增加、刚度 下降,导致Al1-xScxN压电薄膜的机电耦合系数 从5.6%提升至15.8%,从而使HBAR器件的有效机电耦合系数 提升了3倍。同时,当Sc掺杂摩尔分数达25%时,Al1-xScxN(x为Sc掺杂摩尔分数)压电薄膜的声速下降13%,声学损耗提高,导致HBAR器件的谐振频率和品质因数降低。  相似文献   

5.
为缓解我国水、能源和粮食资源紧张问题,促进资源可持续利用,构建水-能源-粮食系统,利用耦合协调度模型对我国的30个省(自治区、直辖市)进行测算,并利用空间杜宾模型分析主要影响因素。结果表明:2003—2017年,我国能源、粮食评价[JP]指数高于水资源评价指数,系统综合评价指数逐年递增;大部分省份耦合协调度处于初级协调水平且呈现逐年上升的态势,个别省份耦合协调度濒临失调;耦合协调度空间自相关性较强,虽有明显波动,但是呈现逐年加强的态势;影响耦合协调度的主要因素有从业人口数、固定资产投资额、人均生产总值、人口总数、[JP]文盲人口占比、工业污染排放、城镇化。  相似文献   
6.
针对云计算应用于无线传感器网络(Wireless Sensor Network,WSN)时延敏感型业务时存在的高传输时延问题,提出了一种WSN低功耗低时延路径式协同计算方法。该方法基于一种云雾网络架构开展研究,该架构利用汇聚节点组成雾计算层;在数据传输过程中基于雾计算层的计算能力分步骤完成任务计算,降低任务处理时延;由于汇聚节点计算能力较弱,时延降低将导致能耗增加,WSN工作寿命减短,为此提出能耗约束下的任务映射策略,并利用离散二进制粒子群优化(Binary Particle Swarm Optimization,BPSO)算法解决能耗约束下的时延优化问题。仿真结果表明,在相同的能耗约束下,对比其他算法,基于BPSO算法得出的映射方案能有效降低业务处理时延,满足时延敏感型业务的需求。  相似文献   
7.
支承或连接构件对梁结构的动力学性能有至关重要影响,必须保证其在振动过程中不发生破坏或者失效。通过合理设计和布局附加弹性支承可以实现对这些重要连接构件所承受约束反力的控制。应用微分变换法推导含附加支承的梁结构支承约束反力及其对于附加支承位置和刚度的灵敏度表达式,并通过优化设计附加支承位置和刚度实现具有弹性约束端的简支梁结构各支承约束反力的平衡,可提高结构的动力学性能。  相似文献   
8.
为了提高废电路板破碎料的分选效率,选用铜颗粒和玻璃颗粒作为研究对象,利用静电气流复合分选技术在EDEM和Fluent耦合仿真下寻求最佳的分选参数。并在Fluent中添加风,对风速进行优化。结果表明:施加在两极板上的库仑力在±1.7×10~5nC之间时,粒径为3mm的颗粒综合分选效率最优,在此基础上,当风速达到35m/s时,综合分选效率都优于静电分选效率。  相似文献   
9.
在用电感耦合等离子体发射光谱测定氧化铁颜料中的镉时,镉常用的3条谱线Cd214.439,Cd226.502和Cd228.802均受到铁光谱不同程度的干扰。实验采用铑作内标,在0~20.0?g/L的铁质量浓度范围内,研究了铁在这3条谱线下的干扰大小。结果发现Cd226.502干扰最大,Cd214.439干扰次之,Cd228.802干扰最小,干扰质量浓度分别在0.130~1.430?mg/L、?0.031~0.329?mg/L和0.005~0.025?mg/L之间;铁在Cd226.502、Cd214.439的干扰随铁质量浓度的增加而增加,增幅均较明显;铁在Cd228.802的干扰随铁质量浓度变化影响不大。最终用Cd228.802进行筛选分析,对于0.500?g样品称取量,当结果≤5.0?mg/kg时判定合格,结果6.2?mg/kg时判定为不合格,只有当结果介于二者之间时,再用其他方法进行分析确认。因此,用Cd228.802进行分析,可以大大提高筛选效率。  相似文献   
10.
以1/4简构车辆和含阻尼简支梁桥为对象,建立可描述跳车冲击过程的车桥耦合振动分析模型。采用Newmark-β积分法获得车桥耦合系统振动响应的数值解。在不同高度、不同跳车位置以及不同车速等工况下,重点讨论跳车冲击过程中桥梁竖向动态位移响应的表现特征。数值分析表明:在文中考虑的跳车冲击工况下,桥梁竖向动态位移存在显著差异;不同跳车高度对动态位移峰值影响很小;不同跳车位置时的竖向动态位移表现各有不同,靠近跨中处,在桥梁前半跨发生跳车冲击对桥梁竖向动态位移值的影响明显大于后半跨,远离跨中处,桥梁前半跨动态位移值与后半跨相近,且最大竖向动态位移表现出滞后特征;不同车速对桥梁竖向位移值影响不同。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号