首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378622篇
  免费   30917篇
  国内免费   17199篇
电工技术   22585篇
技术理论   46篇
综合类   27494篇
化学工业   62472篇
金属工艺   22264篇
机械仪表   24097篇
建筑科学   29549篇
矿业工程   12542篇
能源动力   10277篇
轻工业   25880篇
水利工程   7395篇
石油天然气   24360篇
武器工业   3152篇
无线电   41313篇
一般工业技术   41117篇
冶金工业   19433篇
原子能技术   4000篇
自动化技术   48762篇
  2024年   1541篇
  2023年   5848篇
  2022年   10580篇
  2021年   14734篇
  2020年   11100篇
  2019年   9053篇
  2018年   10410篇
  2017年   11757篇
  2016年   10765篇
  2015年   14894篇
  2014年   18689篇
  2013年   22331篇
  2012年   24396篇
  2011年   26944篇
  2010年   23911篇
  2009年   22685篇
  2008年   22350篇
  2007年   21249篇
  2006年   21487篇
  2005年   18828篇
  2004年   12840篇
  2003年   11373篇
  2002年   10631篇
  2001年   9433篇
  2000年   9209篇
  1999年   9701篇
  1998年   7343篇
  1997年   6263篇
  1996年   5926篇
  1995年   4888篇
  1994年   3958篇
  1993年   2665篇
  1992年   2119篇
  1991年   1603篇
  1990年   1266篇
  1989年   1017篇
  1988年   849篇
  1987年   534篇
  1986年   417篇
  1985年   262篇
  1984年   208篇
  1983年   168篇
  1982年   133篇
  1981年   79篇
  1980年   100篇
  1979年   46篇
  1978年   17篇
  1977年   25篇
  1976年   31篇
  1959年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Ca3Co4O9 is a promising p-type thermoelectric oxide material having intrinsically low thermal conductivity. With low cost and opportunities for automatic large scale production, thick film technologies offer considerable potential for a new generation of micro-sized thermoelectric coolers or generators. Here, based on the chemical composition optimized by traditional solid state reaction for bulk samples, we present a viable approach to modulating the electrical transport properties of screen-printed calcium cobaltite thick films through control of the microstructural evolution by optimized heat-treatment. XRD and TEM analysis confirmed the formation of high-quality calcium cobaltite grains. By creating 2.0 at% cobalt deficiency in Ca2.7Bi0.3Co4O9+δ, the pressureless sintered ceramics reached the highest power factor of 98.0 μWm?1 K-2 at 823 K, through enhancement of electrical conductivity by reduction of poorly conducting secondary phases. Subsequently, textured thick films of Ca2.7Bi0.3Co3.92O9+δ were efficiently tailored by controlling the sintering temperature and holding time. Optimized Ca2.7Bi0.3Co3.92O9+δ thick films sintered at 1203 K for 8 h exhibited the maximum power factor of 55.5 μWm?1 K-2 at 673 K through microstructure control.  相似文献   
3.
Polymer electrets have revealed great potential application in electromechanical devices because of the low weight, large quasi-piezoelectric sensitivity, and excellent flexibility. For an electret, a permanent and macroscopic electric field exists on the surface, principally led by a macroscopic electrostatic charge on the surface or a net orientation of polar groups inside the object. Here, progress in the development of polymer electrets is reviewed. After a brief retrospect of the research courses and those typical polymer electrets that are classified into fluorine polymer and nonfluorine polymer, we present a survey on the charging methods, including corona, soft X-ray, contact, thermal and monoenergetic particle beams. The latest representative applications (i.e., power harvesting, sensors, field effect transistors, and biomedicine) based on polymer electrets are also summarized. Finally, we complete this review with a discussion on perspectives and challenges in this field.  相似文献   
4.
In this work, the composition-dependent point defect types and formation energies of RE2Hf2O7 (RE = La, Ce, Pr, Nd, Pm, Sm, Eu and Gd) as well as the oxygen diffusion behavior are systematically investigated by first-principles calculations. The possible defect reactions and dominant defect complexes under stoichiometric and non-stoichiometric conditions are revealed. It is found that O Frenkel pairs are the predominant defect in stoichiometric pyrochlore hafnates. Hf-RE cation anti-site defects, accompanied by RE vacancies and/or oxygen interstitials, are stable in the non-stoichiometric case of HfO2 excess. On the other hand, RE-Hf anti-site defects together with oxygen vacancies and/or RE interstitials are preferable in the case of RE2O3 excess. The energy barriers for the migration along the VO48f - VO48f pathway of pyrochlore hafnates were calculated to be between 0.81 eV and 0.89 eV. Based on these results, a defect engineering strategy is proposed and the pyrochlore hafnates investigated here are predicted to exhibit potential oxygen ionic conductivity.  相似文献   
5.
Ceramic microparticles have great potentials in various fields such as materials engineering, biotechnology, microelectromechanical systems, etc. Morphology of the microparticle performs an important role on their application. To date, it remains difficult to find an effective and controllable way for fabricating nonspherical ceramic microparticles with 3D features. This work demonstrates a method that combines UV light lithography and single emulsion opaque-droplet-templated microfluidic molding to prepare the crescent-shaped ceramic microparticles. By tailoring the intensity of UV light and flow rate of fluid, the shapes of microparticles are accordingly tuned. Therefore, varieties of crescent-shaped microparticles and their variations have been fabricated. After sintering, the crescent-shaped alumina ceramic microparticles were obtained. Benefitting from the light absorption and scattering behavior of most ceramic nanoparticles, this system can serve as a general platform to produce crescent-shaped microparticles made from different materials, and hold great potentials for applications in microrobotics, structural materials in MEMS, and biotechnology.  相似文献   
6.
7.
Sun  Junli  Wang  Huaibin  Li  Yang  Zhao  Min 《Journal of Porous Materials》2021,28(3):889-894
Journal of Porous Materials - Co3O4 has been widely investigated as a promising candidate anode material for lithium-ion batteries. We report on the porous Co3O4 column synthesized via a simple...  相似文献   
8.
Mastocytosis is a type of myeloid neoplasm characterized by the clonal, neoplastic proliferation of morphologically and immunophenotypically abnormal mast cells that infiltrate one or more organ systems. Systemic mastocytosis (SM) is a more aggressive variant of mastocytosis with extracutaneous involvement, which might be associated with multi-organ dysfunction or failure and shortened survival. Over 80% of patients with SM carry the KIT D816V mutation. However, the KIT D816V mutation serves as a weak oncogene and appears to be a late event in the pathogenesis of mastocytosis. The management of SM is highly individualized and was largely palliative for patients without a targeted form of therapy in past decades. Targeted therapy with midostaurin, a multiple kinase inhibitor that inhibits KIT, has demonstrated efficacy in patients with advanced SM. This led to the recent approval of midostaurin by the United States Food and Drug Administration and European Medicines Agency. However, the overall survival of patients treated with midostaurin remains unsatisfactory. The identification of genetic and epigenetic alterations and understanding their interactions and the molecular mechanisms involved in mastocytosis is necessary to develop rationally targeted therapeutic strategies. This review briefly summarizes recent developments in the understanding of SM pathogenesis and potential treatment strategies for patients with SM.  相似文献   
9.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
10.
Dielectric capacitors with decent energy storage and fast charge-discharge performances are essential in advanced pulsed power systems. In this study, novel ceramics (1-x)NaNbO3-xBi(Ni2/3Nb1/3)O3(xBNN, x = 0.05, 0.1, 0.15 and 0.20) with high energy storage capability, large power density and ultrafast discharge speed were designed and prepared. The impedance analysis proves that the introducing an appropriate amount of Bi(Ni0·5Nb0.5)O3 boosts the insulation ability, thus obtaining a high breakdown strength (Eb) of 440 kV/cm in xBNN ceramics. A high energy storage density (Wtotal) of 4.09 J/cm3, recoverable energy storage density (Wrec) of 3.31 J/cm3, and efficiency (η) of 80.9% were attained in the 0.15BNN ceramics. Furthermore, frequency and temperature stability (fluctuations of Wrec ≤ 0.4% over 5–100 Hz and Wrec ≤ 12.3% over 20–120 °C) were also observed. The 0.15BNN ceramics exhibited a large power density (19 MW/cm3) and ultrafast discharge time (~37 ns) over the range of ambient temperature to 120 °C. These enhanced performances may be attributed to the improved breakdown strength and relaxor behavior through the incorporation of BNN. In conclusion, these findings indicate that 0.15BNN ceramics may serve as promising materials for pulsed power systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号