首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
以2,2′-二甲基-4,4′-二氨基联苯(m-TB)为二胺单体,均苯四甲酸二酐(PMDA)和3,3′,4,4′-联苯四甲酸二酐(BPDA)为二酐单体,N,N′-二甲基乙酰胺(DMAc)为溶剂,采用常规的两步法制备了一系列不同二酐比例的热塑性聚酰亚胺,并通过红外光谱仪、X-射线衍射仪、热重分析仪、紫外光谱仪、动态热分析仪、溶解性测试等对共聚聚酰亚胺的结构和性能进行表征.结果表明:在1 780、1 720、1 500、1 380、1 050和725 cm~(-1)处出现明显的吸收峰,说明成功制备了聚酰亚胺材料;共聚聚酰亚胺只在PMDA与BPDA物质的量比为0.2∶0.8时存在结晶峰,其他比例时均为非晶聚合物;亚胺化后的共聚聚酰亚胺在DMSO、DMAc、DMF、NMP和m-cresol中有溶解性,证明成功制备出热塑性聚酰亚胺薄膜;热塑性共聚PI起始分解温度大于500℃,800℃时的质量保持率在50%以上,具有良好的热稳定性;随着聚合物中BPDA含量的提高,热塑性聚酰亚胺薄膜的玻璃化转变温度呈现下降的趋势.当紫外光波长达到400 nm时,薄膜的透光率高达57.6%,当波长为760 nm时,薄膜透光率均达到100%,成功制备了透光率较高的聚酰亚胺薄膜.  相似文献   

2.
采用3,3’,4,4’-联苯四羧酸二酐(BPDA)与4,4’-二氨基二苯醚(ODA)聚合形成聚酰胺酸,通过氨基引入具有光敏功能的小分子化合物,制备出离子型光敏聚酰亚胺前驱体。并对该离子型光敏聚酰亚胺的结构与性能进行了表征,表现出良好光敏性、热稳定性和电性能,在微电子领域具有良好应用前景。  相似文献   

3.
以9,9-双(4-氨基苯基)芴(BAF)为二胺,分别与6种二酐单体——均苯四甲酸二酐(PMDA)、3,3’,4,4’-二苯醚四甲酸二酐(ODPA)、3,3’,4,4’-二苯甲酮四甲酸酐(BTDA)、3,3’,4,4’-联苯四甲酸二酐(BPDA)、4,4'-(六氟异丙烯)二酞酸酐(6FDA)和1,2,3,4-环丁烷四甲酸二酐(CBDA),经室温溶液缩聚反应得到聚酰胺酸溶液,再经化学酰亚胺化反应得到芴基聚酰亚胺(PI)。采用红外光谱、差示扫描量热分析、热重分析、溶解性测试及气体分离性能测试等手段对PI的结构和性能进行了表征。所合成的PI在N-甲基吡咯烷酮(NMP)等强极性溶剂中均具有良好的溶解性,且表现出良好的热性能,玻璃化转变温度(Tg)均在300℃以上,芳香族PI的起始热分解温度也均超过500℃,经600℃热处理的芴基PI,表现出了较好的气体渗透性能,但PI-CBDA膜的气体通量最小。  相似文献   

4.
系统研究了在含2,3,3’,4’-联苯四酸二酐(a-BPDA)的聚酰亚胺(PI)泡沫材料体系中,计算相对分子质量、二胺分子结构、二酐分子结构对聚酰亚胺泡沫材料性能的影响。研究发现,对于a-BPDA/m-PDA/NA体系,计算相对分子质量为1500时,可以制备得到性能优良的硬质耐高温聚酰亚胺泡沫材料,其玻璃化转变温度高于350℃,闭孔率大于88%,压缩强度为1.34 MPa。在该体系中,部分引入ODPA,可提高材料的韧性;当n(BTDA)∶n(a-BPDA)=5∶5时,泡沫材料不但拥有高的耐热性能和力学力学性能,同时还具有良好的韧性。  相似文献   

5.
以对硝基苯甲酸为原料,通过酰氯化、酰化、还原反应成功合成了4,4’-二氨基苯酰替苯胺(DBN),DBN分别和3,3’,4,4’-联苯四酸二酐(BPDA)、均苯四甲酸二酐(PMDA)通过两步法缩聚制备出聚酰亚胺薄膜,用红外(FT-IR),差示扫描量热仪(DSC)和热重分析(TGA),拉伸测试表征其结构和性能,结果表明,成功合成了含有酰胺键的聚酰亚胺薄膜,并且酰胺键的N-H分别和酰亚胺环中的C-N和C=O形成了氢键。将其与4,4’-二氨基二苯醚(ODA)聚酰亚胺薄膜相比,对应二酐(BPDA和PMDA)分别和DBN制备的聚酰亚胺薄膜表现出了优异的热性能和耐溶剂性,尤其是拉伸强度有了显著的提高。  相似文献   

6.
砜基取代高折射率高透明性聚酰亚胺的合成与性能   总被引:1,自引:0,他引:1  
首先合成了同时含有砜基与硫醚键的二胺单体,4,4′-双(4-胺基苯硫基)二苯砜(BADPS).采用BADPS分别与4种二酐单体,3,3′,4,4′-联苯四羧酸二酐(BPDA)、3,3′,4,4′-二苯醚四羧酸二酐(ODPA)、4,4′-双(3,4-二羧基苯硫基)二苯硫醚二酐(3SDEA)以及1,2,3,4-环丁烷四羧酸二酐(CBDA)通过两步聚合工艺制备了一系列聚酰亚胺(PI).制备的PI薄膜具有优良的综合性能,包括良好的热稳定性、可见光波长范围内优良的透明性以及高折射率与低双折射.10mm厚的PI薄膜在450nm处的透光率超过80%.全芳香族PI(PI-1~PI-3)的折射率>1.70,双折射<0.02.  相似文献   

7.
以3,3′,4,4′-联苯四酸二酐(BPDA)-对苯二胺(PDA)/4,4′-二苯醚二胺(ODA)型聚酰亚胺为芯层,将2,2′-双(4-(4-氨基苯氧基)苯基)丙烷(BAPP)-BPDA型聚酰胺酸涂覆于芯层的上、下表面并热亚胺化得到3层聚酰亚胺薄膜。为提高3层聚酰亚胺薄膜的韧性,将降冰片烯二酸酐-马来酰亚胺基七异丁基聚倍半硅氧烷交替共聚物(poly(MIPOSS-alt-NA))作为BPDA的共单体引入到上、下表层的热塑性聚酰亚胺中。结果表明,当poly(MIPOSS-alt-NA)的质量分数为6.0%时,3层聚酰亚胺薄膜的断裂伸长率从7.2%提高到14.5%,热膨胀系数则从27.0×10-6 K-1降低至23.6×10-6 K-1,与铜箔制备的柔性覆铜板剥离强度达到12.0 N/cm,针对拉伸断面电镜照片的变化对增韧机理进行了分析。  相似文献   

8.
采用1,2,4-三羧基-3-羧甲基环戊烷二酐(TCA)、4,4’-二氨基二苯甲烷(MDA)及长侧链二胺4-十二烷氧基苯甲酸酯联苯酚-3’,5’-二胺基苯甲酸酯(DBPDA)共聚制备了一系列的聚酰亚胺。并对其溶解性能、透光性能及取向性能进行了测试。结果显示,聚酰亚胺在有机溶剂中可溶,成膜后紫外透光率较高,在波长400 n...  相似文献   

9.
为了改善聚酰亚胺的加工性能,以对氨基酚和二氯二甲基硅烷为原料合成了一种含硅二胺活性单体双(4-氨基苯氧基)二甲基硅烷(简写APMSI),采用不同配比的APMSI和4,4’-二氨基二苯醚(ODA)混和胺与均苯四甲酸二酐(PMDA)共缩聚制得含硅聚酰亚胺.采用傅立叶变换红外光谱(FTIR)、核磁共振谱(1H和13C)、熔点测定仪对对乙酰氨基酚、双(4-氨基苯氧基)二甲基硅烷(APMSI)的结构进行了表征,其总产率达到67%.采用傅立叶变换红外光谱仪(FTIR)、差热分析仪(DTA)、热重分析仪(TG)和溶解实验分别对纯聚酰亚胺和含硅聚酰亚胺的结构、热性能和溶解性进行了表征.结果表明,含硅聚酰亚胺较纯聚酰亚胺耐热性低,但随含硅二胺单体增多而升高;其玻璃化转变温度随含硅二胺单体增多而大幅下降;其溶解性相对于纯聚酰亚胺有大幅提高.  相似文献   

10.
以2,3,3’,4’-联苯四甲酸二酐(a-BPDA)为二酐,以3,4’-二氨基二苯醚(3,4’-ODA)和间苯二胺(m-PDA)为混合二胺,并以邻苯二甲酸酐(PA)封端,采用高温一步法制备了4种不同分子量的具有扭曲分子主链结构的热塑性聚酰亚胺(TPIs)。并对此系列热塑性聚酰亚胺的热性能、熔体黏度及机械性能进行了一系列的考察。研究发现,TPI-B树脂具有良好的综合性能:Tg为305℃,在380℃熔体黏度为6970Pa.s,拉伸强度为62MPa,弯曲模量为135MPa,兼具高Tg及良好的加工性能。  相似文献   

11.
张永爱  曾祥耀  周雄图  郑灼勇  郭太良 《功能材料》2012,43(23):3201-3203,3207
以联苯四酸二酐(BPDA)和4,4’-二氨基二苯醚(ODA)为单体原料,利用溶液缩聚法制备聚酰亚胺(PI)绝缘膜,采用XRD、SEM、FT-IR对不同热亚胺化温度合成的PI薄膜结构和表面形貌进行了表征,利用超高阻微电流测试仪测试了热亚胺化温度和粉体含量对PI绝缘膜击穿场强的影响。结果表明,在真空度为1.0×10-2Pa条件下,300℃热亚胺化1h,聚酰亚胺酸(PAA)薄膜完全被热亚胺化,制备的PI绝缘膜内部结构致密;当BPDA和ODA的粉体含量为5%时,PI绝缘膜击穿场强高达2.15MV/cm,表明PI薄膜具有良好的电学性能。  相似文献   

12.
以邻甲基苯胺和联苯甲醛为起始原料,经一步有机反应,合成了一种新型二胺单体3,3’-二甲基-4,4’-二氨基-联苯基甲烷(1)。将二胺单体(1)分别与4种商品化芳香二酐经一步法高温缩聚,制得了一系列可溶性聚酰亚胺PI,其特性黏度在0.62~0.80dL/g之间。该类聚酰亚胺表现出优异的溶解性能,室温下不仅可以溶于高沸点的甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)、二甲基甲酰胺(DMF)溶剂中,而且还能溶于低沸点的CHCl3、CH2Cl2等溶剂中。由该聚合物溶液涂覆所制聚酰亚胺薄膜具有浅的颜色和高的光学透明性,其中由二胺单体1和二苯醚酐所制薄膜的截断波长在346nm,400nm处的透过率超过70%。此外该系列聚酰亚胺还表现出良好的热学性能,玻璃化转变温度在300℃以上。空气和氮气中10%热失重温度分别在400℃和500℃以上。  相似文献   

13.
以邻甲基苯胺和联苯甲醛为起始原料,经一步有机反应,合成了一种新型二胺单体3,3’-二甲基-4,4’-二氨基-联苯基甲烷(1)。将二胺单体(1)分别与4种商品化芳香二酐经一步法高温缩聚,制得了一系列可溶性聚酰亚胺PI,其特性黏度在0.62~0.80dL/g之间。该类聚酰亚胺表现出优异的溶解性能,室温下不仅可以溶于高沸点的甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)、二甲基甲酰胺(DMF)溶剂中,而且还能溶于低沸点的CHCl3、CH2Cl2等溶剂中。由该聚合物溶液涂覆所制聚酰亚胺薄膜具有浅的颜色和高的光学透明性,其中由二胺单体1和二苯醚酐所制薄膜的截断波长在346nm,400nm处的透过率超过70%。此外该系列聚酰亚胺还表现出良好的热学性能,玻璃化转变温度在300℃以上。空气和氮气中10%热失重温度分别在400℃和500℃以上。  相似文献   

14.
氢碘酸、2-氯-5-溴嘧啶、对苯二酚以及对溴硝基苯等为原料,通过碘代、Ullmann、Williamson以及还原等反应合成了5,5′-双[P-(4-氨基苯氧基)苯氧基]联嘧啶,用元素分析,IR和1H-NMR等手段对化合物的组成和结构进行了表征。这种二胺与联苯四酸二酐(BPDA)通过两步法聚合获得含联嘧啶单元的聚酰亚胺,通过红外、差示扫描量热仪(DSC)和热重分析等实验测试了该类聚合物的结构、热性能、力学性能及结晶性能。新型聚酰亚胺分子结构单元中多个醚键以及联嘧啶单元氮杂原子的极性综合作用,使其玻璃化转变温度达到262℃,具有较好的热稳定性。  相似文献   

15.
通过两步反应制备得到2,5-双(4-氨基-2-三氟甲基苯氧基)叔丁基苯,将其分别与均苯四甲酸二酐(PM-DA)、3,3’,4,4’-四羧酸二苯醚二酐(ODPA)、3,3’,4,4’-二苯酮四酸二酐(BTDA)、3,3’,4,4’-联苯四酸二酐(BPDA)、双酚A二酐(BPADA)通过缩聚和热亚胺化制备得到5种性能优异的聚酰亚胺薄膜。结果表明薄膜的玻璃化转变温度(Tg)高于210℃,起始分解温度高于510℃;吸水率低于0.9%;介电常数介于2.90~3.15之间;杨氏模量在1.48~2.27GPa之间。  相似文献   

16.
为了探究适用于柔性印刷线路板的高热稳定性、低热膨胀系数聚酰亚胺薄膜,将3,3’,4,4’-联苯四甲酸二酐(3,3’,4,4’-BPDA)与4,4’-二氨基二苯醚(4,4’-ODA)和2-(4-氨基苯基)-5-氨基苯并咪唑(DAPBI)单体进行聚合,通过改变2种二胺的用量制备了一系列不同二胺比例的聚酰亚胺薄膜。采用红外、紫外、热重分析、差示扫描量热、动态力学热分析、热机械分析多种测试方法对不同比例薄膜样品的热性能、热稳定性、动态力学性能和光透过性进行了研究。研究结果表明,随着刚性DAPBI组分的增加,所制备薄膜的玻璃化转变温度逐渐升高,耐热性能变好,储能模量从3.5 GPa逐渐增加到5.9 GPa;薄膜的热膨胀系数(CTE)明显减小。当二胺ODA与DAPBI的摩尔比为4:6或5:5时,共聚薄膜的CTE值最接近18×10-6K-1。  相似文献   

17.
以芳香二酐和自制的3,3'-二甲基-4,4'-二氨基二苯甲烷(DMMDA)二胺为单体,N-甲基吡咯烷酮(NMP)为溶剂,从分子结构的角度出发,设计合成了聚酰胺酸溶液,经化学亚胺化反应制备了高相对分子质量的可溶性聚酰亚胺材料,进一步通过浸没-沉淀相转化法制备出聚酰亚胺基纳滤膜。通过红外光谱、核磁、热重分析、扫描电镜、原子力显微镜等对合成单体和聚酰亚胺基纳滤膜的结构和性能进行了分析和表征。结果表明,成功地合成了DMMDA二胺单体,以该单体为原料制备的聚酰亚胺基纳滤膜具有较高的分离性能,对酸性红94的截留率高达92%,同时具有良好的耐溶剂性及重复使用性。  相似文献   

18.
以低成本的3-氨丙基三己氧基硅烷(APTES)为交联剂,4,4′-二氨基二苯醚(ODA)为二胺单体,3,3′,4,4′-联苯四甲酸二酐(BPDA)或均苯四甲酸二酐(PMDA)为二酐单体,采用溶胶-凝胶和化学亚胺化方法,结合CO2超临界干燥技术,制备出两种不同二酐单体的交联型聚酰亚胺气凝胶。采用FTIR、SEM、N2吸脱附、万能材料试验机、热重分析等手段来表征样品的化学组成、微观形貌、孔结构、压缩性能及热稳定性,研究了二酐单体种类对聚酰亚胺气凝胶的压缩性能及热稳定性的影响。结果表明:采用BPDA和PMDA制备的交联型聚酰亚胺气凝胶都具有纳米尺度的纤维状网络结构,具有密度低(0.102 g/cm3和0.121 g/cm3)和比表面积大(295 m2/g和311 m2/g)的特性。以PMDA为单体的交联型聚酰亚胺气凝胶10%应变对应的压缩强度和压缩模量分别为0.37 MPa和5.3 MPa,高于以BPDA为单体的交联型聚酰亚胺气凝胶(0.17 MPa和3.0 MPa)。此外,前者制得的聚酰亚胺的初始热分解温度为543 ℃,高于后者制得的聚酰亚胺的初始热分解温度(502 ℃)。  相似文献   

19.
以均苯四甲酸二酐(PMDA)和4,4’-对苯二甲酰二邻苯二甲酸酐(TDPA)为二酐单体,4,4’-(3-氨基苯氧基)二苯甲酮(BABP)为二胺单体,采用两步法低温溶液缩聚合成了系列双酮酐型共聚酰亚胺。采用红外光谱、X射线衍射、差示扫描量热分析、热重分析、拉伸测试和溶解性能测试对聚合物的结构与性能进行了表征,考察了TDPA/PMDA不同摩尔比对共聚酰亚胺溶解性、耐热性和力学性能的影响。结果表明,双酮酐型聚酰亚胺的玻璃化转变温度随TDPA摩尔含量的增加逐渐下降,溶解性能则逐渐提高,当TDPA/PMDA摩尔比为7/3时,共聚酰亚胺具有优良的耐热性能及力学性能,可溶于N,N-二甲基甲酰胺(DMF)等极性溶剂。  相似文献   

20.
二胺结构对线形缩聚型聚酰亚胺性能的影响   总被引:1,自引:0,他引:1  
以3,3',4,4'-二苯醚二酐(OPDA)与六种不同结构的二胺在N,N-二甲基乙酰胺中通过逐步聚合,合成了线性缩聚型聚酰胺酸,并通过热关环制备了聚酰亚胺,探讨了二胺结构对其热性能及粘接性能的影响.红外分析表明,固化后的聚酰亚胺已经完全酰亚胺化.差示扫描量热(DSC)结果表明,聚酰亚胺具有较高的玻璃化转变温度,并随着结...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号