首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PMMA、SAN改性PVC/CPE共混体的研究   总被引:3,自引:0,他引:3  
研究了刚性聚合物(PMMA、SAN)对PVC/CPE共混体力学性能、冲击断面形貌及流变性的影响。结果表明,PMMA对PVC/CPE=100/10、100/15体系,SAN对PVC/CPE=100/10体系都具有显著的增韧作用和一定的增强作用;初步的测定显示,刚性聚合物能改善共混熔体的流变性,促进PVC/CPE共混体系中CPE网络结构的形成和分散性。  相似文献   

2.
研究了纳米碳酸钙(CaCO_3)对氯化聚乙烯(CPE)/丙烯酸树脂(ACR)/聚氯乙烯(PVC)共混体系力学性能的影响,并通过动态机械热分析(DMA)和扫描电子显微镜(SEM)对共混体系的力学松弛行为、纳米CaCO_3在CPE/ACR/PVC共混体系中的分散状态及共混体系的断面形貌特征进行了表征。结果表明,纳米CaCO_3能够显著提高CPE/ACR/PVC共混体系的冲击性能,而不降低共混体系的强度。加入纳米CaCO_3后,共混体系的低温损耗(tanδ)峰强度显著增大,并且与冲击强度的变化具有很好的对应性。SEM观察发现,8 phr纳米CaCO_3可在CPE/ACR/PVC基体中形成纳米尺度的均匀分散,加入过多纳米CaCO_3则会出现明显的团聚。  相似文献   

3.
PVC/NBR共混物微观结构与性能的关系   总被引:7,自引:1,他引:6  
本文测定了两种丁腈橡胶(NBR-29和NBR-40)与聚氯乙烯(PVC)共混物的应力-应变行为和冲击性能,用动态力学分析(DMA)与透射电子显微镜(TEM)研究了共混物的相容性和形态结构,并且讨论了形态结构与性能的关系。研究结果表明:NBR-29对PVC有优良的增韧改性作用,PVC/NBR-29共混物为半相容的两相体系,NBR-40对PVC则无增韧改性效果,PVC/NBR-40共混物为非均匀的相容体系。  相似文献   

4.
研究了经磨盘形力化学反应器碾磨处理后的PVC/SBS共混体系的结构与性能。结果表明,经过碾磨的PVC/SBS共混体系的GPC曲线峰型变宽,峰位向高分子量部分移动,Molau实验和FT—IR均表明在碾磨过程中有PVC—SBS共聚物生成,SBS与PVC的相容性得到了改善。PVC的冲击强度为4.6kJ/m^2,以PVC与SBS共碾磨产物(MCB)为增容增韧荆可使PVC/MCB(100/59)的冲击强度高达68.1kJ/m^2。少量超细CaCO2的加入可提高共混体系的屈服强度和断裂伸长率,通过碾磨可获得既增韧又增强的良好效果。  相似文献   

5.
采用β成核的动态硫化iPP/EPDM共混物即热塑性硫化胶(TPV)改性聚丙烯,并与通用增韧剂聚烯烃弹性体(POE)、三元乙丙橡胶(EPDM)增韧聚丙烯进行比较,考察了增韧体系的力学性能、热性能和相形态.结果表明,随增韧剂含量的增加,增韧体系的拉伸屈服强度和弯曲模量均有所下降,而冲击强度提高.TPV改性体系的强度、模量和...  相似文献   

6.
用熔融共混法制备不同环氧呋喃树脂(FER)含量的聚乳酸/环氧呋喃树脂/聚丁二酸丁二醇酯(PLA/FER/PBS)共混物,使用旋转流变仪、扫描电镜(SEM)和万能试验机等手段研究了FER含量对PLA/PBS共混体系的动态流变行为和相容性的影响。结果表明:当应变(γ)小于30%时动态模量不随γ的变化而变化,共混体系表现出线性黏弹行为;当γ大于30%后动态模量明显降低,出现了"Payne"效应。FER能改善PLA/PBS共混体系的加工性能;PLA/PBS共混体系有两个不同的驰豫过程,使曲线出现两个明显的半圆弧,加入FER后PLA和PBS两相的形态发生了改变;当FER含量为0.3 phr时共混体系的Han曲线与v GP曲线重叠,表明PLA和PBS的相容性较好;当FER含量为0.3 phr时PLA与PBS的界面黏附性最佳,表明PLA与PBS具有最为理想的界面相容性;FER添加量为0.3 phr时共混物的拉伸强度和冲击强度分别达到最大值56.9 MPa和4.33 k J/m2,比PLA/PBS共混物提高了11.2%和37.0%。  相似文献   

7.
PVC/特种CPE的共混增韧   总被引:1,自引:0,他引:1  
采用固相法对高密度聚乙烯(HDPE)进行氯化,得到分子链上具有特殊氯分布的特种氯化聚乙烯(CPE)(SCPE),其可以作为增韧剂对聚氯乙烯(PVC)增韧。结果表明,在SCPE含量为5份时,PVC/SCPE共混物的拉伸强度相对于PVC没有降低,反而提高了4%左右;缺口冲击强度提高了62.5%(13 kJ/m2)。差示扫描...  相似文献   

8.
以二苯基甲烷二异氰酸酯(MDI)、聚ε-己内酯多元醇(PCL)及1,4-丁二醇(1,4-BDO)为原料,成功设计合成了聚酯型热塑性聚氨酯弹性体(TPU)。合成条件:异氰酸酯指数R=0.98,温度60~70℃,反应时间1 h。通过元素分析、红外光谱、核磁共振、差示扫描量热分析、凝胶色谱等测试,确定了TPU中的硬段含量及化学结构。通过与聚氯乙烯(PVC)进行共混,评价了合成TPU对PVC的增韧效果,经力学性能测试、差示扫描量热分析以及扫描电子显微镜观察研究了共混材料的结构与性能,揭示增韧机理。结果表明,合成TPU与PVC之间具有良好的相容性,对PVC有良好的增韧作用,当m(PVC)∶m(TPU)=170∶30时,力学性能优于市售TPU牌号。合成的TPU随硬段比例增加,PVC/TPU共混物材料拉伸强度变化不大,断裂伸长率下降,而冲击强度大幅提高,实现了对PVC的增韧。  相似文献   

9.
以二苯基甲烷二异氰酸酯(MDI)、聚ε-己内酯多元醇(PCL)及1,4-丁二醇(1,4-BDO)为原料,成功设计合成了聚酯型热塑性聚氨酯弹性体(TPU)。合成条件:异氰酸酯指数R=0.98,温度60~70℃,反应时间1 h。通过元素分析、红外光谱、核磁共振、差示扫描量热分析、凝胶色谱等测试,确定了TPU中的硬段含量及化学结构。通过与聚氯乙烯(PVC)进行共混,评价了合成TPU对PVC的增韧效果,经力学性能测试、差示扫描量热分析以及扫描电子显微镜观察研究了共混材料的结构与性能,揭示增韧机理。结果表明,合成TPU与PVC之间具有良好的相容性,对PVC有良好的增韧作用,当m(PVC)∶m(TPU)=170∶30时,力学性能优于市售TPU牌号。合成的TPU随硬段比例增加,PVC/TPU共混物材料拉伸强度变化不大,断裂伸长率下降,而冲击强度大幅提高,实现了对PVC的增韧。  相似文献   

10.
对聚氯乙烯/氯化聚乙烯/聚乙烯共混体系的研究   总被引:1,自引:0,他引:1  
从动态粘弹谱和力学性能的测试证实氯化聚乙烯(CPE)与聚氯乙烯(PVC)不相容,但可以作为PVC/聚乙烯(PE)的增容剂。对共混物的形态研究发现,在PVC/CPE中加入少量低密度聚乙烯(LDPE)有利于CPE连续网状结构的形成。通过双辊混炼机和Brabender流变仪研究了CPE和PE对PVC的抗冲击性能和加工性能的影响。结果表明,CPE能促进PVC的塑化,LDPE能延缓PVC的塑化。在PVC/CPE(100/10)中加入少量PE可使抗冲击强度大大提高。PVC/CPE/LDPE(100/12/2.5)在20℃的抗冲击强度比PVC/CPE(100/12)高30千焦/米~2以上。采用示差扫描量热计研究了共混物分散状态,实验结果表明混炼时间、混炼温度和混料顺序对共混物抗冲击强度有明显影响。  相似文献   

11.
目的 改善大豆油多元醇和L-赖氨酸乙酯二异氰酸酯作为生物基单体原位聚合增韧聚乳酸(PLA)共混物的界面相容性。方法 在上述2种单体原位聚合增韧PLA的过程中,添加少量过氧化二异丙苯(DCP),诱导聚合形成的聚氨酯增韧相与PLA基体之间发生增容反应;然后再研究添加DCP后,对所制备PLA共混物微观结构、力学性能及结晶/熔融性能的影响规律。结果 加入DCP后,发现聚氨酯增韧相凝胶含量增加,同时共混物界面相容性得到改善。当DCP质量分数为0.8%时,共混物缺口冲击强度达到最高(12.3 kJ/m2),约为纯PLA的4.4倍。随着DCP质量分数从0增加1.2 %,共混物中PLA组分的熔融温度和结晶度逐渐从163.8 ℃和7.3%降至155.6 ℃和3.2%。结论 在生物基单体原位聚合增韧PLA体系中添加少量DCP,可制备出一种具有良好韧性的全生物基PLA材料。  相似文献   

12.
采用种子乳液聚合技术在聚丙烯酸丁酯(PBA)上接枝共聚单体苯乙烯(St)和丙烯腈(AN),分别合成了橡胶含量为30%的一系列不同丙烯腈含量的ASA共聚物,将其与聚氯乙烯(PVC)熔融共混,形成PVC/ASA共混物,考察不同AN含量对PVC/ASA结构与性能的影响。结果发现,随着AN含量的增加,PVC/ASA的冲击强度呈现先增大后减小的趋势,当AN含量为37%时,冲击强度达到最大值。而拉伸强度和断裂伸长率随着AN含量的增加而增大。形态结构研究结果表明尽管改变AN含量,PVC/ASA均为不相容体系,这与动态力学性能及力学性能的结果相一致。  相似文献   

13.
采用多阶段种子乳液聚合方法制备了以交联的聚丙烯酸丁酯(PBA)为核、以聚甲基丙烯酸甲酯(PMMA)为壳的核-壳结构增韧剂,用透射电子显微镜观察了增韧剂胶乳粒子的形态和粒径,考察了增韧剂与聚碳酸酯(PC)共混物的相容性及力学性能。动态力学实验结果显示,增韧剂与PC基体之间具有良好的相容性和界面粘接。冲击实验结果表明,增韧剂对PC有良好的增韧效果,其用量为4%(体积分数)时,使PC的缺口冲击强度较增韧前提高了16倍。  相似文献   

14.
PVC/PP共混体系的亚微形态研究   总被引:9,自引:2,他引:7  
通过扫描电镜(SEM)对PVC/PP共混物的微观结构进行观察,发现共混物在高PVC和高PP共混组成时,其亚微形态属于典型的“海-岛”结构。在两相逆转的中间,经历了一个两相连续交错“互锁”的相转变区域。5份增容剂CPE使PVC/PP体系的相转变区域明显变宽。PVC/PP共混体系的“互锁”结构随剪切速率的提高逐渐被破坏,直至消失。  相似文献   

15.
首次采用稀溶液黏度法(DSV法),通过相对黏度-组成曲线、增比黏度-浓度曲线,以及值对PVC与PS f的相容特性进行了研究。结果表明,PVC/PS f共混体系为部分相容体系,体系相容性随PVC/PS f共混比的增大而增加;溶液浓度和温度对PVC/PS f体系的相容性存在一定的影响。  相似文献   

16.
本文应用广角X衍射,动态粘弹仪,透射电镜等测试方法研究了ClIIR-g-PS共聚物的形态和相容性。结果表明,ClIIR-g-PS共聚物在PS含量较低及拉伸条件下,可生成微晶,共聚物的两相相逆转变点在PS含量为33%—36%,共聚物的两相区随PS组分增加而减小;在一定组成范围内,共聚物只有一个玻璃化转变,成为两相相容体系。对共聚物及共混物体素研究证明,共聚物具有较好的两相相容性,共聚物对共混体系有较强的增容作用。  相似文献   

17.
首先选取POE对PP进行增韧,确定PP/POE二元共混物具备较高的强度和韧性的最佳比例。然后固定PP基体比例为85%,将PP、POE和PE 3种聚合物在一定条件下共混制备一系列三元共混物。借助SEM观察,在PP基体中发现了POE包覆PE的核壳结构分散粒子。通过建立这一系列三元共混物的形态-性能(屈服强度、悬臂梁冲击强度和落锤冲击能)关系,研究PE核相的核壳分散相的增韧机理。此外,通过Wu氏理论的发展进一步比较了二元和三元共混体系的增韧机理。结果表明,单独POE增韧PP能大幅度提升韧性但是会使材料强度降低;核壳结构分散相可使三元共混物的强度和韧性达到基本平衡,在最佳条件下相比原始PP韧性提高约2.5倍。  相似文献   

18.
以聚氯乙烯(PVC)为基体,采用熔融共混法制备了PVC/氯化聚乙烯(CPE)/碳酸钙(CaCO3)复合材料,对不同CPE含量的PVC/CPE/CaCO_3复合材料的动态流变行为与力学性能进行了研究。结果表明:随着CPE含量的增加,复合材料熔体的储能模量(G′)与损耗模量(G″)先升高后降低,而松弛指数(λ_1)、特征松弛时间(τ_2)则分别呈现减小与增大的趋势,当CPE含量由0phr变为10phr时,复合材料冲击性能提高了约133.5%。通过对复合材料熔体动态流变行为进行分析,可以推测出CPE与CaCO_3颗粒之间逐渐形成部分包覆、全包覆、过包覆的结构模型,从而解释了CPE增韧复合材料的机理。  相似文献   

19.
以聚氯乙烯(PVC)为基体,采用熔融共混法制备了PVC/氯化聚乙烯(CPE)合金和PVC/CPE(12 phr)/碳酸钙(CaCO3)三元复合材料,考察了CaCO3表面改性及改性剂含量对复合材料拉伸与冲击力学性能的影响。结果表明,填充CaCO3会降低复合材料拉伸屈服强度与冲击韧性。对微米CaCO3进行表面改性,可有效限...  相似文献   

20.
AS/ABS/CPE共混体系的力学性能和断裂形态   总被引:2,自引:0,他引:2  
用流变方法研究了ABS树脂与氯化聚乙烯(CPE)的相容性。通过力学性能的测试和电镜观察研究了AS/ABS/CPE共混体系力学性能与组成、工艺、形态结构的关系。结果表明,在AS/CPE共混体系中加入ABS后,改善了AS与CPE的相容性,使该共混体系的力学性能有明显的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号