首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
普遍的稀土分离采用一种萃取剂萃取,其萃取率较低,为提高稀土萃取率使其资源最大化利用,本文采用P204-N235混合共同萃取体系来萃取氯化钇和氯化钆的混合稀土料液,通过研究P204-N235相比、P204-N235体积比、震荡时间、P204-N235协同萃取氯化钇与氯化钆水相初始料液PH值及稀土离子浓度,实验结果表明P204-N235协同萃取稀土当P204-N235相比为3∶1、P204与N235萃取剂体积比为1∶1、震荡时间为10 min、P204-N235协同萃取氯化钇与氯化钆水相初始料液PH值=3、稀土离子浓度为0.1 mol/L时可强化稀土的萃取效果。  相似文献   

2.
研究了P507-N235混合萃取剂分离石煤酸浸液中钒与铁的工艺,考察了N235/P507浓度、萃原液pH、萃取时间、相比(A/O)对钒、铁萃取率及钒铁分离效果的影响。结果表明,采用0.4 mol/L P507,0.8mol/L N235为萃取剂,磺化煤油为稀释剂,pH=1.7,萃取时间5min,A/O=5/1,经4级萃取,钒萃取率可达98.36%,而铁萃取率仅为5.78%。相对现有的P204、P507单一体系,P507-N235体系具有更好的萃取能力及钒铁分离性能。  相似文献   

3.
《稀土》2015,(6)
P_(507)-N_(235)双溶剂萃取体系利用P_(507)萃取稀土离子、N_(235)萃取酸的特性实现了稀土的无皂化萃取分离。在振荡时间5 min、相比1∶1、料液pH值2~3工艺条件下,P_(507)-N_(235)体系对稀土的萃取能力随着原子序数的增大而增大,符合"正序萃取"规律,对稀土的萃取量随着料液浓度的增加而增大。在震荡时间8 min、相比1∶1、料液浓度1 mol·L~(-1)的最优萃取工艺条件下,测定了各稀土元素组之间的平均分离系数。研究结果能为P_(507)-N_(235)体系应用于实际生产提供理论依据。  相似文献   

4.
用P204和P350组成的二元协同萃取体系萃取氯化铈稀土料液,研究萃取体系的震荡时间、相比及稀土离子浓度对萃取率的影响,结果表明,当P204与P350体系的振荡时间9 min、相比1:1、稀土离子浓度为0.1 mol/L时,协同萃取体系具有最佳萃取效果,此时萃取率为71%;红外表征中萃取相出现的特征峰,可定性说明萃取反...  相似文献   

5.
P507-N235体系稀土萃取分离性能研究   总被引:1,自引:0,他引:1  
研究了P507-N235无皂化萃取体系稀土分离系数的变化规律。实验结果表明,P507中加入N235可提高La/Ce分离系数,且分离系数随N235加入量的增加而提高;相比O/A越大,La/Ce分离系数越高;萃取混合时间应控制在8 min较为合适;对比实验发现,P507-N235体系稀土元素间分离系数普遍高于现有的P507体系。  相似文献   

6.
介绍了在硫酸介质中使用P507+N235双溶剂萃取体系萃取除铁的工艺应用。通过生产实践发现,铁以三价态被萃取,有机相由15%P507+5%N235+80%260#稀释剂组成,相比2∶1,铁萃取率达到98%以上,在反萃剂为250g/L稀硫酸溶液,相比4∶1的条件下反萃,铁反萃率达到98%以上,反萃液经均相渗析膜分离回收酸,渗析残液通过控制pH,可采用铁矾法、中和除铁和砷酸铁等工艺除铁,铁脱除率均可达到90%以上。  相似文献   

7.
介绍了在硫酸介质中使用P507+N235双溶剂萃取体系萃取除铁的工艺应用。通过生产实践发现,铁以三价态被萃取,有机相由15%P507+5%N235+80%260#稀释剂组成,相比2∶1,铁萃取率达到98%以上,在反萃剂为250g/L稀硫酸溶液,相比4∶1的条件下反萃,铁反萃率达到98%以上,反萃液经均相渗析膜分离回收酸,渗析残液通过控制pH,可采用铁矾法、中和除铁和砷酸铁等工艺除铁,铁脱除率均可达到90%以上。  相似文献   

8.
采用叔胺萃取剂N235对含钒酸性溶液进行萃取,主要研究了萃取温度、振荡时间、萃取剂浓度、相比(O/A)及pH对钒、铁萃取分离效果的影响。结果表明,硫酸型N235从酸性溶液中萃取钒的机理是阴离子萃取,并且当温度为20~40℃,振荡时间3min,N235浓度10%,O/A=1∶3,溶液pH为1.45~1.6时,单级萃取率可达到84%。  相似文献   

9.
研究了用季胺盐协同体系(P507+N263)从溶液中萃取镧。结果表明:2种萃取剂混合后对镧有正协同萃取作用,最大协同系数达3.25;在V(P507)/V(N263)=1/1、料液pH=3.5、V_o/V_a=3/4、振荡时间7 min条件下,镧萃取分配比为0.94;在稀土浓度0.52 mol/L、振荡时间7 min、V_o/V_a=1/1条件下,镧铈分离系数达14.8;负载有机相用5 mol/L盐酸反萃取,镧可完全被转入溶液;混合萃取剂的协同萃取能力优于2种萃取剂单独使用时的萃取能力。  相似文献   

10.
P204与N235协同萃取钕的研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用非皂化的酸性萃取剂P204和碱性萃取剂N235协同萃取钕。研究了P204与N235的配比、萃取剂浓度、水相酸度、稀土浓度对P204与N235协同萃取钕的影响。结果表明,当N235与P204以体积比6∶4、协同萃取剂与煤油的体积比1∶1、pH为3.0时协同萃取钕的效果最好,随着稀土料液浓度的增大,萃取量先增大后趋于平稳,并且最大饱和容量达28g/L(REO),大于P204单独萃取钕的饱和容量。  相似文献   

11.
研究了P507和皂化P507对水的萃取行为,并针对氯化镧的萃取,研究了皂化P507萃取稀土过程中水在有机相中的分布。结果表明:盐酸的存在会抑制水进入P507中,NH~+_4的存在会促进水进入P507中;氨皂化后的P507更易萃取水;萃取时提高相比(V_O∶V_A)有利于缩短皂化P507萃取稀土的分相时间,避免乳化现象发生。  相似文献   

12.
研究了N235从石煤硫酸浸出液中直接萃取钒的工艺参数,考察N235体积分数、萃取时间、萃取温度、相比等对钒萃取率的影响。结果表明,最佳萃取工艺参数为:N235体积分数40%、有机相与水相相比1∶4、25℃萃取6min,钒两级总萃取率为97.82%;以0.8mol/L的碳酸钠溶液为反萃剂、有机相与水相相比3∶1、在25℃反萃6min,钒两级总反萃率大于99%,钒与其他主要杂质元素分离。  相似文献   

13.
硫酸镍电解液净化除杂工艺研究   总被引:7,自引:3,他引:4  
对硫酸镍电解液的萃取净化除杂进行了系统的研究。实验采用M5640对铜离子进行除杂,实验条件为:pH值为3.0,相比为1∶1,萃取剂体积浓度为15%,振荡时间5min,在此实验条件下铜离子的萃取率大于99.83%,其含量小于0.1mg·mL-1,已达到5N镍电解液标准。去除铜离子之后,采用P507对电解液进行除杂,在实验条件pH为4.0,相比为1∶1,萃取剂体积浓度为15%,振荡时间5min下,二价铁离子、锌离子、铅离子的萃取率分别为:99.93%,99.75%,84.01%,其含量分别为:0.10,0.21,0.30mg·mL-1,已达到5N镍电解液标准。在此之后再采用P507对电解液中钴离子进行去除,实验条件为:用氢氧化钠溶液均相制皂75%,提高待萃液当中钴离子的含量至4.19g.L-1,即Co/Ni为1/10。实验采取四级萃取,控制水相pH值在4~5之间。钴离子萃取率为74.92%,含量为14.88mg·mL-1,已达到5N镍电解液标准。  相似文献   

14.
本文用P204和TBP组成的协同萃取体系萃取氯化铈的混合稀土料液,主要研究目标是如何从氯化铈稀土溶液中高效率萃取分离稀土元素,更好减少对环境的污染,得到更为纯净的稀土元素,研制了新的协同萃取体系,是一项成熟的绿色环保工艺即P204-TBP体系,可直接用于稀土的萃取,回收稀土元素,实现循环利用。本实验的有机相为P204和TBP的混合试剂,水相为氯化铈溶液,通过观察萃取体系中P204的用量、振荡时间、相比以及稀土铈的浓度等因素对萃取铈的影响,得到P204和TBP所占比的具体分析数值。  相似文献   

15.
M5640+P204+P507萃取净化镍电解液   总被引:2,自引:0,他引:2  
对硫酸镍电解液的萃取净化除杂进行了系统研究。采用M5640对铜离子进行除杂的条件为:pH3.0,相比1∶1,萃取剂体积浓度15%,振荡时间5min,在此条件下铜离子的萃取率大于99.83%,萃余液含铜已达到5N镍电解液标准要求。去除铜离子之后,采用P204对电解液进行除杂,试验条件:pH4.0,相比2∶1,萃取剂体积浓度25%,振荡时间7min,温度20℃。萃余液再用P507萃取除杂,试验条件:用氢氧化钠溶液均相制皂75%,提高待萃液当中钴离子的含量至4.19g/L,即Co/Ni为1/10,4级萃取,控制水相pH4~5。最终萃余液中各杂质离子的含量均达到生产5N镍的电解液标准。  相似文献   

16.
研究了硫酸体系中质子化的叔胺类萃取剂N235对钒萃取性能的影响及萃取机制。实验过程中考察了萃取振荡时间、水相初始p H、萃取剂浓度、SO2-4浓度对钒萃取性能的影响。结果表明:在有机相组成为5%N235+5%仲辛醇+90%磺化煤油,相比(O/A)为1∶2的条件下,N235萃取钒的平衡时间为2 min;水相初始p H在2.5~4.0之间时,钒的萃取率随初始p H的增大略微下降;当初始p H为2.5时,钒的萃取率达到最大,为94.46%。SO2-4离子浓度对萃取率有一定的影响,萃取率随其浓度的增加而减小;萃取率随着N235初始浓度的增加而增大,浓度过大不利于萃取过程的进行。当水相p H为2.0~4.0时,水相中钒主要以H2V10O4-28,HV10O5-28等络合阴离子形式存在。采用饱和容量法和等摩尔系列法研究了N235对钒的萃取机制,当水相平衡p H值为2.0时,萃合物中钒与N235的摩尔比,即萃合比([V]/[N235])为2.5;平衡p H为4.0时,萃合比为2.0,并分别得到了相应的萃取方程。  相似文献   

17.
利用软锰矿在酸性(硫酸体系)条件下氧化浸出闪锌矿,对其浸出液进行萃取铟分离铁。以P507-煤油为萃取体系,考察酸度、萃取剂的浓度、温度、相比(体积比)、时间等对铟铁萃取率的影响。在室温条件下,酸度1.5 mol/L、P507体积分数30%、萃取相比1∶1、萃取时间10 min、铟的一级萃取率可达到99%以上,而铁的一级萃取率为20%。对负载有机相进行草酸(30 g/L)洗涤,铁洗涤率为99.99%,而铟的洗涤率仅为0.000 1%。达到了萃取富集铟分离杂质的目的。  相似文献   

18.
废弃线路板(PCB)浸出液经萃取提铜除铁后利用P507富集分离浸出液中的Ni 2+,考察萃取剂浓度、皂化率、相比(O/A)、萃取时间、浸出液pH对Ni 2+萃取率的影响。结果表明,在皂化率为30%、相比1∶1、P507浓度20%、萃取搅拌时间3min、浸出液pH 2.07的条件下,PCB微生物浸出液中Ni 2+的萃取率可达99.4%以上。  相似文献   

19.
以钛白废液为原料,采用P507为萃取剂进行钒的萃取分离回收。考察了萃取剂种类和浓度、有机相与水相比、溶液pH值、萃取温度和时间对钛白废液中钒萃取率的影响。结果表明:在有机相配比为15%P507+5%仲辛醇+80%磺化煤油、钛白废液pH值为2.0、有机相和水相比为1.25∶1、温度为50℃、振荡时间为6min的条件下,钛白废液中的钒萃取率大于98%。萃取饱和有机相经过硫酸反萃、NaClO_3氧化、铵盐沉钒、540℃煅烧后,得到纯度大于99%的V_2O_5产品。  相似文献   

20.
采用溶剂萃取法脱除铜电解液中的杂质,在水相料液中添加助萃剂Cl-,研究Cl-作用下萃取剂N235对铋的萃取性能.考察有机相N235体积分数、水相助萃剂Cl-浓度、有机相与水相的体积比 (相比)、萃取时间、萃取温度等因素对铋萃取率的影响.研究结果表明:有机相N235体积分数、水相助萃剂Cl-浓度和相比是影响铋萃取率的主要因素;较为适宜萃取铋的条件为:水相硫酸浓度为3.0 mol/L,氯离子浓度为0.1 mol/L,萃取剂N235体积分数为20 %,相比为1:1,萃取时间为5 min.在此实验条件下,铋的一级萃取率达到97.3 %(质量分数).   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号