首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A current operational amplifier with differential input and differential output is described. The amplifier is based on the parallel connection of a CCII+ current conveyor and a CCII? current conveyor followed by a differential output transconductance gain stage. The performance of the amplifier is analysed and experimental results obtained from an implementation using standard operational amplifiers and current mirrors realized using transistor arrays are presented and compared to the theoretical analysis. It is concluded that the static small signal open loop gain and the frequency response matches the performance of conventional voltage operational amplifiers. The input offset and bias errors and the common mode rejection are shown to be strongly dependent on the matching accuracy of the current mirrors used in the conveyors. The proposed configuration can easily be integrated into a monolithic amplifier in either CMOS or bipolar technology.  相似文献   

2.
一种应用于低压CMOS差分放大器的失调取消技术   总被引:1,自引:0,他引:1  
基于对CMOS差分放大器的非线性和元件失配理解的基础上,提出了一种应用于低电压CMOS差分放大器的失调取消技术.这种技术在不需要增加功耗的基础上,通过把输出端的失调电压转移到差分放大器的其他节点,从而达到减小输入参考的失调电压的目的.为了验证这种技术,设计了一个工作电压为1.8V的低失调的CMOS差分放大器.仿真结果表明,在负载晶体管的失配为20%,输入放大管的失配为10%时,利用这种失调转移技术,输入参考的失调可以减少40%.同已发表的失调取消技术相比,利用这种技术可以达到更低的功耗和更高的集成度.  相似文献   

3.
This work presents a fully integrated linearized CMOS RF amplifier, integrated in a 0.18-/spl mu/m CMOS process. The amplifier is implemented on a single chip, requiring no external matching or tuning networks. Peak output power is 27 dBm with a power-added efficiency (PAE) of 34%. The amplitude modulator, implemented on the same chip as the RF amplifier, modulates the supply voltage of the RF amplifier. This results in a power efficient amplification of nonconstant envelope RF signals. The RF power amplifier and amplitude modulator are optimized for the amplification of EDGE signals. The EDGE spectral mask and EVM requirements are met over a wide power range. The maximum EDGE output power is 23.8 dBm and meets the class E3 power requirement of 22 dBm. The corresponding output spectrum at 400 and 600 kHz frequency offset is -59 dB and -70 dB. The EVM has an RMS value of 1.60% and a peak value of 5.87%.  相似文献   

4.
The impact of CMOS technology scaling on the various radio frequency (RF) circuit components such as active, passive and digital circuits is presented. Firstly, the impact of technology scaling on the noise and linearity of the low-noise amplifier (LNA) is thoroughly analyzed. Then two new circuits, i.e., CMOS complementary parallel push-pull (CCPP) circuit and vertical-NPN (V-NPN) circuit for direct-conversion receiver (DCR), are introduced. In CCPP, the high RF performance of pMOS comparable to nMOS provides single ended differential RF signal processing capability without the use of a bulky balun. The use of parasitic V-NPN bipolar transistor, available in triple well CMOS technology, has shown to provide more than an order of magnitude improvement in 1/f noise and dc offset related problems, which have been the bottleneck for CMOS single chip integration. Then CMOS technology scaling for various passive device performances such as the inductor, varactor, MIM capacitor, and switched capacitor, is discussed. Both the forward scaling of the active devices and the inverse scaling of interconnection layer, i.e., more interconnection layers with effectively thicker total dielectric and metal layers, provide very favorable scenario for all passive devices. Finally, the impact of CMOS scaling on the various digital circuits is introduced, taking the digital modem blocks, the various digital calibration circuits, the switching RF power amplifier, and eventually the software defined radio, as examples.  相似文献   

5.
The electrical characteristics of the parasitic vertical NPN (V-NPN) BJT available in deep n-well 0.18-/spl mu/m CMOS technology are presented. It has about 20 of current gain, 7 V of collector-emitter breakdown voltage, 20 V of collector-base breakdown voltage, 40 V of Early voltage, about 2 GHz of cutoff frequency, and about 4 GHz of maximum oscillation frequency at room temperature. The corner frequency of 1/f noise is lower than 4 kHz at 0.5 mA of collector current. The double-balanced RF mixer using V-NPN shows almost free 1/f noise as well as an order of magnitude smaller dc offset compared with CMOS circuit and 12 dB flat gain almost up to the cutoff frequency. The V-NPN operational amplifier for baseband analog circuits has higher voltage gain and better input noise and input offset performance than the CMOS ones at the identical current. These circuits using V-NPN provide the possibility of high-performance direct conversion receiver implementation in CMOS technology.  相似文献   

6.
An analog calibration technique is presented to improve the parameter matching between transistors in the differential high-frequency signal path of analog CMOS circuits. It can be applied for mismatch reduction in differential broadband amplifiers and direct down-conversion mixers in which short-channel devices are utilized to minimize bandwidth reduction from parasitic capacitances. In general, the proposed methodology is suitable for radio frequency (RF) applications in which direct matching of the transistors is undesired because sophisticated layout practices would increase the coupling between the high-frequency paths. The approach involves auxiliary devices which sense the existing mismatch as part of a feedback loop for error minimization. This technique is demonstrated with a differential amplifier that has a loaded gain and −3 dB frequency of 12.9 dB and 2.14 GHz, respectively. It was designed in 90 nm CMOS technology with a 1.2 V supply. Monte Carlo simulations indicate that the 4.06 mV standard deviation of the amplifier’s anticipated input-referred offset voltage improves to 0.76–1.28 mV with the mismatch reduction loop, which is contingent on the layout configuration of the calibration circuitry. The associated drain current mismatch reduction for the transistor pair under calibration in the amplifier core is from 3.1% to 0.6–1.0%.  相似文献   

7.
This paper proposes a high‐efficiency power amplifier (PA) with uneven bias. The proposed amplifier consists of a driver amplifier, power stages of the main amplifier with class AB bias, and an auxiliary amplifier with class C bias. Unlike other CMOS PAs, the amplifier adopts a current‐mode transformer‐based combiner to reduce the output stage loss and size. As a result, the amplifier can improve the efficiency and reduce the quiescent current. The fully integrated CMOS PA is implemented using the commercial Taiwan Semiconductor Manufacturing Company 0.18‐μm RF‐CMOS process with a supply voltage of 3.3 V. The measured gain, P1dB, and efficiency at P1dB are 29 dB, 28.1 dBm, and 37.9%, respectively. When the PA is tested with 54 Mbps of an 802.11g WLAN orthogonal frequency division multiplexing signal, a 25‐dB error vector magnitude compliant output power of 22 dBm and a 21.5% efficiency can be obtained.  相似文献   

8.
A CMOS RF digitally programmable gain amplifier (RF PGA), covering various terrestrial mobile digital TV standards (DMB, ISDB-T, and DVB-H) is implemented as a part of a low-IF tuner IC using 0.18-/spl mu/m CMOS technology. An improvement of 13-dB IIP3 is attained without significant degradation of other performance criteria like gain, noise figure, common-mode rejection ratio, etc., at similar power consumption. This is achieved by applying a newly proposed differential circuit gm" (the second derivatives of transconductance) cancellation technique, called the differential multiple gated transistor (DMGTR). In the DMGTR amplifier, the negative value of gm" in the fully differential amplifier can be compensated by the positive value of gm" in the pseudo differential amplifier which is properly sized and biased. By adopting the DMGTR, a low-power highly linear RF PGA is implemented. Also, in order to have wide gain range with fine step resolution, a new RF PGA architecture is proposed. The measurement results of the proposed RF PGA exhibit 50-dB gain range with 0.25-dB resolution, 4.5-dB noise figure, a -4-dBm IIP3 (maximum 30 dBm) and 25-dB gain at 16-mW power consumption.  相似文献   

9.
CMOS PWM D类音频功率放大器的过流保护电路   总被引:1,自引:0,他引:1  
基于Class-D音频功率放大器的应用,采用失调比较器及单边迟滞技术,提出了一种过流保护电路,其核心为两个CMOS失调比较器。整个电路基于CSMC0.5μmCMOS工艺的BSIM3V3Spice典型模型,采用Hspice对比较器的特性进行了仿真。失调比较器的直流开环增益约为95dB,失调电压分别为0.25V和0.286V。仿真和测试结果显示,当音频放大器输出短路或输出短接电源时,过流保护电路都能正常启动,保证音频放大器不会受到损坏,能完全满足D类音频放大器的设计要求。过流保护电路有效面积为291μm×59.5μm。  相似文献   

10.
An integrated low-phase-noise voltage-controlled oscillator(VCO) has been designed and fabricated in SMIC 0.18μm RF CMOS technology.The circuit employs an optimally designed LC resonator and a differential cross-coupling amplifier acts as a negative resistor to compensate the energy loss of the resonator.To extend the frequency tuning range,a three-bit binary-weighted switched capacitor array is used in the circuit.The testing result indicates that the VCO achieves a tuning range of 60%from 1.92 to 3.35 GHz.The phase noise of the VCO is -117.8 dBc/Hz at 1 MHz offset from the carrier frequency of 2.4 GHz.It draws 5.6 mA current from a 1.8 V supply.The VCO integrated circuit occupies a die area of 600×900μm~2.It can be used in the IEEE802.11 b based wireless local network receiver.  相似文献   

11.
用于315/433MHz超再生接收机的射频前端关键技术   总被引:1,自引:0,他引:1  
采用0.5μm CMOS工艺实现了用于315/433MHz超再生无线接收机的射频前端电路,包括射频放大器和超再生振荡器。文中提出了一种改进型有源电感,提高了射频放大器中谐振回路的品质因数。阐述了振荡器的自偏置效应以及振荡器输出信号幅度和电流源的关系,在此基础上实现了适用于包络检波的差分结构超再生振荡器。测试结果显示,电源电压范围为2.5V~5V,电流小于2.5mA,系统接收灵敏度优于-90dBm。  相似文献   

12.
谢君 《信息技术》2011,(10):80-84
射频功率放大器是无线设备的关键器件,GaAs工艺被广泛使用在射频功放的设计制造上。而CMOS工艺在生产成熟度和成本上有很大优势,主要关注用CMOS工艺来做射频功放的问题,介绍世界上第一颗量产的CMOS功放及其所使用的特殊技术。利用一款成熟的手机产品,替换这颗功放及外围器件,最后与原产品进行对比测试。  相似文献   

13.
IIP2 Calibration by Injecting DC Offset at the Mixer in a Wireless Receiver   总被引:3,自引:0,他引:3  
A major contributor to degraded input-referred second-order intercept point (IIP2) in integrated RF systems-on-chips is local oscillator (LO) leakage to the input of RF circuits. In this brief, we present a digital calibration technique for improving IIP2 by injecting controlled dc offset at the mixer output through a three-port network of switched-capacitor filters. The dc offset at mixer output gets up-converted to LO frequency at the input of RF circuits due to poor reverse isolation of the receiver front-end. By controlling the amplitude of the injected dc, IIP2 degradation due to LO leakage at the input of RF amplifiers can be compensated. Mathematical analysis is presented and supported by measurement data from a quad-band GSM/GPRS receiver implemented in 90-nm digital CMOS process. Calibrated IIP2 of 50 dBm is reported for the receiver at low-noise amplifier input.  相似文献   

14.
A novel bias-switching scheme for a high-efficiency power amplifier is proposed. Two voltage levels for the drain bias of the RF power amplifier are generated using a combination of a class E dc/ac inverter and a class E rectifier with offset voltage. When signal peaks occur, the output of the class E dc/ac inverter is rectified and the rectified dc is added to the offset voltage by the class E rectifier, which boosts the drain bias of the RF power amplifier. Except during peaks, the drain bias of the RF power amplifier is connected to the offset voltage directly. Since the efficiency when there are no peaks is very high due to the direct connection between the offset voltage and drain bias, the overall efficiency of the RF power amplifier can be improved dramatically in high peak-to-average power ratio (PAPR) systems. The measured results show that the drain bias of the RF power amplifier is boosted up to approximately 1.8 times the offset voltage when the RF peaks generate. The overall efficiency of the proposed bias-switching amplifier is improved by 62% compared to that of the fixed bias amplifier in high PAPR systems  相似文献   

15.
Design and chip fabrication results for complementary RF circuit topologies that utilize the complementary RF characteristics of both NMOS and PMOS field-effect-transistor devices combined in parallel way are reported, which can inherently provide single-ended differential signal-processing capability, requiring neither baluns, nor differential signal generating/combining circuits. The proposed complementary CMOS parallel push-pull (CCPP) amplifier gives an order of magnitude improvement in IP/sub 2/ than an NMOS common-source amplifier and single-balanced CCPP resistive mixer, which functions effectively as a double-balanced one, provides more than an order of magnitude better linearity in IP/sub 2/, and similar order of magnitude better local oscillator (LO)-IF and LO-RF isolations than NMOS counterparts.  相似文献   

16.
A BiCMOS circuit technology featured by a novel bit-line sense amplifier has been developed. The bit-line sense amplifier is composed of a BiCMOS differential amplifier, the impedance-converting means featured by the CMOS current mirror circuit or the clocked CMOS inverter between the bit line and the base node of the BiCMOS differential amplifier, and a conventional CMOS flip-flop. This technology can reduce the access time to half that of a conventional CMOS DRAM access time. Applied to a 1-kb DRAM test chip, a new BiCMOS circuit technology was successfully verified. Furthermore, the sensitivity and area penalty of the new BiCMOS bit-line sense amplifier and future applications to megabit DRAMs are discussed  相似文献   

17.
The application of floating-gate elements as adjustable components in analog CMOS circuits such as amplifiers is proposed. A simple trimming circuit based on this principle and delivering a differential current is described. Experimental results of a differential difference amplifier (DDA) containing two such circuits are given. After trimming, an offset voltage of 10 μV and a nonlinearity of 0.1% are achieved. Other analog circuits based on floating-gate elements like adjustable voltage sources and transconductances have been realized. Because they can be electrically reprogrammed, a wide range of applications, for example in neural nets, are possible  相似文献   

18.
This paper proposes a new circuit topology for RF CMOS low noise amplifier (LNA). Since pMOS devices are approaching the performances of nMOS devices in scaled technologies, the idea is to realize the input stage shunting an inductively degenerated nMOS stage with a pMOS one. In this way, due to the inherent current reuse, the performances can be improved using the same power consumption. Since the devices of an inductively degenerated input stage are working in moderate inversion (at least at moderate power dissipation), prior to the stage optimization an appropriate moderate inversion model is introduced. A fully differential 900-MHz 0.35-μm CMOS LNA (plus output buffer) prototype achieves the following performances: 2-dB noise figure (NF), 17.5-dB power gain, -6-dBm IIP3 with 8-mA current consumption from a 2.7-V voltage supply. To the author's knowledge, this is the lowest reported NF for a fully differential CMOS LNA operating at this power consumption level. As an additional feature, this LNA has a programmable gain  相似文献   

19.
顾晓丽  刘一清  李中楠 《半导体技术》2012,37(8):590-593,611
介绍了一种基于0.18μm CMOS工艺,具有开关功能的低压集成温度传感器。该温度传感器利用半导体pn结的电流电压与温度有关的特性,获取双极晶体管基极-发射极电压差值ΔVBE,采用仪表放大器进行后级放大。仪表放大器由两个采用折叠式共源共栅结构,带有PD开关信号的运算放大器作为反馈系统,放大倍数为7。用ADE工具,对整个电路在工作电压1.8 V、偏置电流20μA下进行仿真,得到其精度为1.58 mV/℃,再在不同工艺角下进行仿真验证。版图总面积为320μm×280μm。该设计已经在一款数字视频芯片中得到实现,用于实时检测芯片温度。实际测试结果与模拟仿真结果基本相同。  相似文献   

20.
Polar modulation of a switching RF amplifier is an excellent candidate to combine both linearity, efficiency and CMOS integration for RF power amplifiers used in mobile and wireless communication systems. In this paper, the different sources of distortion associated with polar modulation are discussed and verified by measurement results. A fully integrated linearized CMOS RF Power Amplifier for GSM–EDGE, realized in a 0.18 μm CMOS technology, is used as a benchmark to validate the presented theory. It is demonstrated how the combination of a differential delay between the amplitude signal and the phase signal, together with the AM–PM distortion of the Class E amplifier, generates an asymmetry in the output spectrum. The effect of low-pass filtering of the envelope signal is investigated and the degradation on the linearity with and without delay adjustment is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号