首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
介绍了高强度双相钢DP600热轧工艺的优化过程。通过热模拟测定了热轧DP600动态CCT曲线,制定了生产工艺参数并进行3.4 mm厚度DP600的工业试制。在分析首次试制的热轧DP600微观组织构成和力学性能基础上,对终轧温度和空冷时间进行优化,获得了合理配比的微观组织。试制结果表明:采用优化后的热轧工艺,DP600主要由铁素体+马氏体组成,马氏体的比例在15%左右,铁素体晶粒较细小,为11.5级,产品组织均匀;横向屈服强度387 MPa,抗拉强度642 MPa,延伸率(A_(80))27%,各项性能指标均优于首次试制,完全满足双相钢的基本要求。  相似文献   

2.
 采用热模拟并借助光学显微镜、SEM技术研究了双相钢的相变规律及不同工艺参数下的组织演变规律。根据热模拟结果在实验室试制出700 MPa级热轧双相钢,优化了轧制和冷却工艺参数。实验结果表明:热轧双相钢组织为多边形铁素体+马氏体岛,抗拉强度730 MPa,屈强比062,伸长率236%,达到了DP700级双相钢的性能要求,并讨论了热轧卷取温度对双相钢最终力学性能的影响。  相似文献   

3.
热轧双相钢DP600组织性能的研究   总被引:1,自引:0,他引:1  
选择添加铬、钼合金元素的碳、锰、硅系的高强双相钢DP600为研究对象,选择Gleeble-3800热模拟试验机为研究方法测定了DP600动态CCT曲线,并模拟DP600双相钢热轧过程。采用金相组织观察、织构分析及力学性能测试等手段分析了不同工艺制度下双相钢组织及织构变化规律以及对性能的影响,从中获得最佳组织配比及优化的热轧工艺参数。根据优化的中试结果,进行了热轧双相钢DP600的工业试制。结果表明,试制样品的显微组织为铁素体及马氏体;屈强比均小于0.65,抗拉强度均在600 MPa以上;伸长率在24%以上;其拉伸曲线均为连续曲线,无屈服点伸长,具有典型的双相钢特征。  相似文献   

4.
利用Formastor-FII型膨胀仪和Gleeble-3800热模拟试验机,结合显微组织观察和硬度测试,研究了压力容器用钢17MnNiVNbR的静态和动态连续冷却转变行为,并分析了热变形对相变行为的影响。实验结果表明:冷却速率较低时,17MnNiVNbR钢的相变组织为先共析铁素体和珠光体;随着冷却速率的增加,依次出现贝氏体和马氏体。热变形能提高铁素体、珠光体和贝氏体的相变温度,并使连续冷却转变曲线向左上方移动。  相似文献   

5.
 通过成分工艺优化,在传统冷轧铁素体和马氏体双相钢DP780的显微组织上引入了一定体积分数的残余奥氏体,研究了冷轧退火工艺参数对双相钢DP780的显微组织和力学性能的影响。通过调整连续退火工艺来控制显微组织中一次铁素体、二次铁素体、马氏体、残余奥氏体的比例、尺寸、形貌、分布,同时获得了连退工艺参数-显微组织-力学性能的本质关系。结果表明,通过在传统冷轧铁素体和马氏体双相钢的组织上引入了体积分数为5%~7%的残余奥氏体,不仅可以获得[ReL/Rm≤0.5]的超低屈强比型冷轧DP780,也改善了成型性能。  相似文献   

6.
通过实验室轧制DP590热轧双相钢,研究了卷取温度、快冷温度对热轧双相钢显微组织和力学性能的影响。结果显示,快冷温度提高,马氏体含量显著增加,同时抗拉强度升高,延伸率下降;试验钢在550℃、600℃卷取时,随着卷取温度的升高热轧双相钢中马氏体含量下降,抗拉强度下降明显,延伸率提高。在600℃时得到的铁素体和马氏体比例合适,实现了抗拉强度600 MPa,屈强比0.5左右,延伸率22%以上的热轧双相钢,综合性能满足DP590热轧双相钢的要求。  相似文献   

7.
采用MMS-300热模拟机测定了C-Si-Mn-Cr-Nb系980 MPa级高强度汽车双相钢的动态CCT曲线。实验结果显示:冷却速率在0.1~5℃/s范围内显微组织主要为铁素体+贝氏体;冷却速率达到5℃/s时铁素体转变结束,奥氏体全部转变为贝氏体;当冷却速率达到40℃/s时开始发生马氏体转变,显微硬度和抗拉强度均随冷却速率的增加而增加。  相似文献   

8.
摘要:通过连续冷却实验研究了Nb Ti微碳深冲双相钢在不同冷却速率下的显微组织变化规律。并结合显微组织、热膨胀曲线以及实验钢的硬度值绘制出实验钢的CCT曲线。结果表明,实验钢的CCT曲线由铁素体、珠光体与贝氏体区组成,其中铁素体和贝氏体的区域较大,覆盖冷却速度范围较广。实验冷却速率下未出现马氏体组织。在05~1℃/s的慢冷速下,组织由铁素体和珠光体组成;当冷速增加至3℃/s时,贝氏体开始出现,珠光体消失。当冷速在5~10℃/s范围内时,获得铁素体+贝氏体双相组织;当冷速大于10℃/s时,铁素体相变消失,此时为纯贝氏体转变。热处理过程中若想获得一定量的马氏体组织,退火温度宜设置在820~900℃双相区较低温度范围,使合金元素充分富集于少量奥氏体中,在随后冷却过程中此奥氏体转变为马氏体组织。  相似文献   

9.
通过连续冷却实验研究了Nb-Ti微碳深冲双相钢在不同冷却速率下的显微组织变化规律。并结合显微组织、热膨胀曲线以及实验钢的硬度值绘制出实验钢的CCT曲线。结果表明,实验钢的CCT曲线由铁素体、珠光体与贝氏体区组成,其中铁素体和贝氏体的区域较大,覆盖冷却速度范围较广。实验冷却速率下未出现马氏体组织。在0.5~1℃/s的慢冷速下,组织由铁素体和珠光体组成;当冷速增加至3℃/s时,贝氏体开始出现,珠光体消失。当冷速在5~10℃/s范围内时,获得铁素体+贝氏体双相组织;当冷速大于10℃/s时,铁素体相变消失,此时为纯贝氏体转变。热处理过程中若想获得一定量的马氏体组织,退火温度宜设置在820~900℃双相区较低温度范围,使合金元素充分富集于少量奥氏体中,在随后冷却过程中此奥氏体转变为马氏体组织。  相似文献   

10.
针对DP590热轧双相钢,通过实验室热轧试验,研究了卷取温度、快冷温度对热轧双相钢显微组织和力学性能的影响,对比分析了显微组织中马氏体的数量及形貌。结果显示,快冷温度提高,马氏体含量显著增加,同时抗拉强度升高,延伸率下降;试验钢在550℃、600℃卷取时,随着卷取温度的升高,热轧双相钢中马氏体含量下降,抗拉强度下降明显,伸长率提高。在600℃时得到的铁素体和马氏体比例合适,热轧双相钢抗拉强度600 MPa,屈强比0.5左右,伸长率22%以上,综合性能满足要求。  相似文献   

11.
基于C Si Mn Cr Mo系600 MPa级热轧双相钢的组分,设计了不同硅质量分数(0.55%和1.17%)的两种试验钢。采用Gleeble 3500热模拟试验机测定了两种试验钢的连续冷却转变曲线,分析了硅质量分数对试验钢连续冷却过程中组织转变的影响,并研究了硅质量分数对短流程生产中温卷取型热轧双相钢生产工艺的影响。结果表明,相对于w(Si)=1.17%,w(Si)=0.55%使铁素体开始转变温度降低40~50 ℃,明显缩短了铁素体转变的孕育期,并增加了铁素体的体积分数。在CSP线上生产时,低硅钢的终轧温度可控制为820~830 ℃,低的终轧温度使铁素体相变时间增加2.2 s左右,铁素体转变量增加,且后续相变过程中可避免非马氏体组织的出现。因此,低硅钢适合在CSP短流程线上生产中温卷取型热轧双相钢。  相似文献   

12.
王健  房锦超  张玉文 《中国冶金》2014,24(11):43-45
在热轧双相钢中,终轧温度、卷曲温度、控冷时间和控冷温度对铁素体晶粒的大小和马氏体的形态、分布和含量都有重要影响,直接影响双相钢力学性能。通过对双相钢动态CCT曲线的模拟,制定出了合理的工艺制度,系统分析了热轧双相钢DP600热轧生产过程中终轧温度、卷取温度、控冷时间和控冷温度对双相钢的影响,对热轧双相钢的关键技术参数进行了研究,最终确定了合适的双相钢热轧生产工艺。  相似文献   

13.
摘要:DP1180钢相变动力学方程的构建,有利于其力学性能的精准调控。利用Gleeble 3500对DP1180钢进行相变点测定,结合切线法、金相 硬度法研究了DP1180钢在冷却过程中的显微组织演变规律,绘制连续冷却转变曲线(CCT),并基于相变产物对相变动力学方程(JMAK方程)进行了修正。结果表明:冷速为0.5~1℃/s时,组织为铁素体(F)和贝氏体(B);冷速为2℃/s时,有马氏体(M)出现;冷速为10℃/s时,组织为贝氏体(B)和马氏体(M);冷速大于20℃/s时,组织以马氏体(M)为主;显微硬度随冷速的增加而升高;基于不同相变产物对n值的影响规律,对传统JMAK方程进行修正,构建了基于相变产物的相变动力学方程,预测精度得到提升。  相似文献   

14.
刘学伟  赵楠 《钢铁》2017,52(1):87-91
 通过热轧厂实际生产试制,研究了钛、铌微合金元素对600 MPa级低成本低温卷取型铁素体/马氏体双相钢组织和性能的影响,并与同强度级别中温卷取双相钢进行对比。研究结果表明,沿晶界分布的纳米级(Nb,Ti)C第二相显著细化了铁素体/马氏体两相组织,由此解决了不含钛、铌元素的低温卷取双相钢马氏体岛粗大的问题,提高其强度和塑性。此外,试制生产对比发现,中温卷取双相钢存在晶粒尺寸较粗,马氏体体积分数较少,强度相对略低等特征,并提出了相应的热轧工艺改进思路。  相似文献   

15.
CSP流程生产经济型热轧双相钢的工艺与组织性能   总被引:1,自引:0,他引:1  
韩斌  谭文  汪水泽  张超  蔡晓辉 《钢铁》2011,46(12):44-48
 为了在CSP产线上开发新一代经济型热轧双相钢,并确定生产的最佳成分和工艺,介绍了在武钢CSP生产线进行580MPa级热轧双相钢的工业化生产试制情况。分别采用C-Mn-Si系和C-Mn-Si-Cr系钢为原料,通过控制轧制和基于超强冷却设备的控制冷却工艺,成功开发出抗拉强度580MPa级热轧双相钢。通过比较分析2种成分钢的力学性能和微观组织,结果表明:经济型的C-Mn-Si系钢相对于C-Mn-Si-Cr系钢具有屈服强度低、屈强比小、伸长率大的特点,虽然马氏体量相对较少,但具有马氏体呈岛状更加均匀分布在铁素体晶界上等典型双相钢的特征,同时提出了生产过程中控制铁素体析出量和促进马氏体形成的具体措施。  相似文献   

16.
在实验室试制了800~1200 MPa级超高强冷轧双相钢。DP800和DP1000的热轧组织为铁素体+珠光体,DP1200为铁素体+珠光体+贝氏体复相组织。热轧板经过冷轧和退火后呈现典型的双相钢组织特征,力学性能可以达到相应强度级别的要求。DP800和DP1000马氏体体积分数小于50%,铁素体相为基体;DP1200马氏体体积分数超过50%,马氏体转变为基体相。最后对退火板各力学性能之间的关系进行了对比分析。  相似文献   

17.
Microstructure evolution of C-Si-Mn-Nb,C-Si-Mn-Cr-Nb and C-Si-Mn-Cr-Mo-Nb tested steels during step-cooling process were studied.Effects of alloying element and process data on microstructure and mechanical properties of high strength Nb bearing DP steel were analyzed,to illustrate the relationship between alloy composition design and process control stability during DP microstructure and property control.It is shown that,700MPa ferrite and martensite DP steel is obtained respectively by three kinds of composition tested steel under different step-cooling process.C-Si-Mn-Nb steel with simple alloying design of low cost is provided with low hardenability,and has strong process sensibility during microstructure evolution.DP microstructure of ferrite and martensite of C-Si-Mn-Nb steel just can be obtained by coiling at low temperature of 250℃.The process control stability of C-Si-Mn-Cr-Nb steel is stronger than that of C-Si-Mn-Nb steel,to obtain DP microstructure by coiling at low temperature.C-Si-Mn-Cr-Mo-Nb steel with complex alloying design of high cost is provided with excellent process control stability.Alloy element Mo can promote stabilizing of metastable austenite to obtain F+M DP microstructure by coiling at medium temperature of 600℃.  相似文献   

18.
探讨了800 MPa级冷轧双相钢的成分体系、冷却处理工艺、组织及性能;研究了退火温度、冷却速率对双相钢性能的影响,分析了双相钢的强化机理,并且优化了退火工艺参数。结果表明,冶炼过程采用C-Si-Mn-Cr-V成分体系,轧制过程采用650℃±20℃的中温卷取,连续退火过程中快冷段投入高氢(H2含量20%)冷却,冷速达到42~50℃/s,能够得到由铁素体和马氏体组成的冷轧双相钢DP800,综合力学性能优良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号