首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
红外光学材料硫化锌衬底上沉积金刚石膜的研究   总被引:2,自引:0,他引:2  
采用微波等离子体化学气相沉积法,在预镀陶瓷过渡层的硫化锌衬底上沉积金刚石膜。在以前的实验中,我们发现在陶瓷过渡层上沉积金刚石膜极其困难,但采用金刚石诱导形核方法后,我们已经在过渡层/硫化锌试样表面获得了很小面积(约1mm宽的环状区域)的金刚石形核。本文对前期的诱导形核工作进行了一定改进,目前已经使形核生长范围大大增加,沉积面积超过原来10倍。此外,本文对金刚石/过渡层/硫化锌试样的红外透过特性以及金刚石膜质量等进行了评价。  相似文献   

2.
利用自行研制的石英钟罩式微波等离子体化学气相沉积金刚石薄膜装置,研究了硅基片的不同预处理方式对沉积结果的影响。通过扫描电子显微镜形貌观察和喇曼谱分析表明,基片预处理能提高形核密度;用于预处理的金刚石研磨膏的粒度不同,影响金刚石薄膜沉积时的形核密度、晶形和薄膜的质量;表面划痕对沉积金刚石薄膜的影响具有双重性。  相似文献   

3.
Diamond chemical vapour deposition (CVD) on steel represents a difficult task. The major problem is represented by large diffusion of carbon into steel at CVD temperatures. This leads to very low diamond nucleation and degradation of steel microstructure and properties. Recent work [R. Polini, F. Pighetti Mantini, M. Braic, M. Amar, W. Ahmed, H. Taylor, Thin Solid Films 494 (2006) 116] demonstrated that well-adherent diamond films can be grown on high-speed steels by using a TiC interlayer deposited by the PVD-arc technique. The resulting multilayer (TiC/diamond) coating had a rough surface morphology due to the presence of droplets formed at the substrate surface during the reactive evaporation of TiC. In this work, we first present an extensive Raman investigation of 2 μm, 4 μm and 6 μm thick diamond films deposited by hot filament CVD on TiC interlayers obtained by the PVD-arc technique. The stress state of the diamond was dependent on both the films thickness and the spatial position of the coating on the substrate. In fact, on the top of TiC droplets, the stress state of the diamond was much lower than that of diamond in flatter substrate areas. These results showed that diamond films deposited on rough TiC interlayers exhibited a wide distribution of stress values and that very large compressive stress exists in the diamond film grown on flat regions of steel substrates with a TiC interlayer. Diamond films could accommodate stresses as large as 10 GPa without delamination.  相似文献   

4.
Thermal stress in large area free-standing diamond films was remarkable during the post-deposition cooling of direct current (DC) arc plasma jet chemical vapor deposition (CVD) process.In this research,the stress release caused by delamination of Cr interlayer was of great importance to ensure the integrity of free-standing diamond film.The effects of Cr interlayer on Mo substrate,namely composite substrate,on thermal stress were investigated.Thermo-mechanical coupling analysis of the thermal stress was app...  相似文献   

5.
铜上采用镍过渡层化学气相沉积金刚石薄膜的研究   总被引:7,自引:0,他引:7  
采用镍过渡层研究了铜基片上金刚石薄膜的化学气相沉积.镍过渡层与铜基底间在高温退火条件下形成的铜镍共晶体明显地增强了金刚石薄膜与铜基片之间的结合力.用扫描电子显微镜和激光Raman谱研究了薄膜的形貌和质量;采用高温氢等离子体退火工艺在基片表面形成的铜镍碳氢共晶体上抑制了无定形碳和石墨的形成,有利于金刚石薄膜的生长.金刚石薄膜的均匀性受到共晶体的均匀性的影响.  相似文献   

6.
《Vacuum》1999,52(1-2):193-198
With a titanium interlayer, adherent diamond coating on copper is obtained. The diamond nucleation density is enhanced significantly by scratching the substrate with diamond powder and is influenced by the deposition conditions. It is found that the diamond growth rate increases with microwave power, gas pressure and methane concentration. However, a higher methane concentration results in increased growth defects and non-diamond phases. Under typical deposition conditions, the diamond crystals exhibit a (111) face dominating. The coating adhesion is accessed by pull-off tests and scratch tests. The former indicates that the coating adhesion is better than the strength of the adhesive, at ca 13 MPa. The latter shows a critical load about 8 N.  相似文献   

7.
电镀铬-金刚石复合过渡层提高金刚石膜/基结合力   总被引:1,自引:0,他引:1  
在铜基体上沉积铬-金刚石复合过渡层, 用热丝CVD系统在复合过渡层上沉积连续的金刚石涂层. 用扫描电镜(SEM)、X射线(XRD)、拉曼光谱及压痕试验对所沉积的镶嵌结构界面金刚石膜的相结构及膜/基结合性能进行了研究. 结果表明, 非晶态的电镀Cr在CVD过程中转变成Cr3C2, 由于金刚石颗粒与Cr3C2的相互咬合作用, 金刚石膜/基结合力高; 在294 N载荷压痕试验时, 压痕外围不产生大块涂层崩落和径向裂纹, 只形成环状裂纹.  相似文献   

8.
Diamond coating on Ti-6Al-4V alloy was carried out using microwave plasma enhanced CVD with a super high CH4 concentration, and at a moderate deposition temperature close to 500 °C. The nucleation, growth, adhesion behaviors of the diamond coating and the interfacial structures were investigated using Raman, XRD, SEM/TEM, synchrotron radiation and indentation test. Nanocrystalline diamond coatings have been produced and the nucleation density, nucleation rate and adhesion strength of diamond coatings on Ti alloy substrate are significantly enhanced. An intermediate layer of TiC is formed between the diamond coating and the alloy substrate, while diamond coating debonding occurs both at the diamond-TiC interface and TiC-substrate interface. The simultaneous hydrogenation and carburization also cause complex micro-structural and microhardness changes on the alloy substrates. The low deposition temperature and extremely high methane concentration demonstrate beneficial to enhance coating adhesion strength and reduce substrate damage.  相似文献   

9.
The deposition of diamond films on cemented carbides is strongly influenced by the catalytic effect of cobalt under typical deposition conditions. Decreasing the content of Co on the surface of the cemented carbide is often used for the diamond film deposition. But the leaching of Co from the WC-Co substrate leads to a mechanical weak surface, often causing poor adhesion. In this paper we adopt a copper implant layer to improve the mechanical properties of the Co leached substrate. The copper implant layer is prepared with vaporization. The diamond films are grown by microwave plasma chemical vapor deposition from the CH4/H2 gas mixture. The morphology and the quality of the diamond films have been characterized by scanning electron microscopy and Raman spectroscopy. A Rockwell apparatus has evaluated the adhesion of the diamond on the substrate. The results indicate that the diamond films have good adhesion to the cemented carbide substrate due to the recovery of the mechanical properties of the Co depleted substrate after the copper implantation and less graphite formation between the substrate and the diamond film.  相似文献   

10.
Diamond films with fine grain size and good quality were successfully deposited on pure titanium substrate using a novel two-step growth technique in microwave plasma-assisted chemical vapor deposition (MWPCVD) system. The films were grown with varying the methane (CH4) concentration at the stage of bias-enhanced nucleation (BEN) and nano-diamond film deposition. It was found that nano-diamond nuclei were formed at a relatively high methane concentration, causing a secondary nucleation at the accompanying growth step. Nano-diamond film deposition on pure titanium was always very hard due to the high diffusion coefficient of carbon in Ti, the big difference between thermal expansion coefficients of diamond and Ti, the complex nature of the interlayer created during diamond deposition, and the difficulty in achieving very high nucleation density. A smooth and well-adhered nano-diamond film was successfully obtained on pure Ti substrate. Detailed experimental results on the synthesis, characterization and successful deposition of the nano-diamond film on pure Ti are discussed.  相似文献   

11.
《Thin solid films》2006,494(1-2):116-122
The prospect of obtaining good adhesion of diamond films onto steel substrates is highly exciting because the achievement of this objective will open up applications in the cutting and drilling industry. However, a major problem with depositing diamond onto steel is high diffusion of carbon into steel at chemical vapour deposition (CVD) temperatures leading to very low nucleation density and cementite (Fe3C) formation. Therefore, the study of the nucleation and growth processes is timely and will yield data that can be utilised to get a better understanding of how adhesion can be improved. This work focuses on investigating the adhesion of thin diamond films on high speed steel previously coated with various interlayers such as ZrN, ZrC, TiC and TiC/Ti(C,N)/TiN. The role of seeding on nucleation density and the effect of diamond film thickness on stress development and adhesion has been investigated using SEM, XRD and Raman spectroscopy.The main emphasis in this study is the TiC interlayer which for the first time proved to be a suitable layer for diamond CVD on high speed steel (HSS). In contrast from other interlayer materials investigated here, no delamination was observed even after 3 h of CVD at 650 °C only when TiC was employed. Nevertheless, the increase of diamond film thickness on TiC coated HSS substrates led to the delamination of small areas in various regions of the substrate. This occurrence suggests that there was a distribution of adhesive toughness values at the diamond/TiC interface with stress development being dependent on film thickness.  相似文献   

12.
Well-faceted polycrystalline diamond (PCD) films were deposited along with nanocrystalline diamond (NCD) films on the pure titanium substrate by a microwave plasma assisted chemical vapor deposition (MWPCVD) system in the environment of CH4 and H2 gases at a moderate temperature. Diamond film deposition on pure titanium and Ti alloys is always extremely hard due to the high diffusion coefficient of carbon in Ti, the big mismatch in their thermal expansion coefficients, the complex nature of the interlayer formed during diamond deposition, and the difficulty of attaining very high nucleation density. A well-faceted PCD film and a smooth NCD film were successfully deposited on pure Ti substrate by using a simple two-step deposition technique. Both films adhered well. Detailed experimental results on the preparation, characterization and successful deposition of the diamond coatings on pure Ti are discussed. Lastly, it is shown that smooth NCD film can be deposited at moderate temperature with sufficient diamond quality for mechanical and tribological applications.  相似文献   

13.
SiC在异质衬底生长金刚石膜的作用分析   总被引:2,自引:0,他引:2  
利用扫描电子显微镜 (SEM)、Raman光谱分析了Si衬底上金刚石膜核化和生长的过程 ,并着重分析了核化过程产生的SiC的性能。利用划痕法测量了在WC衬底上沉积SiC和未沉积SiC时生长金刚石膜的粘附力 ,同时还分析了WC衬底上有和没有SiC沉积层时表面附近金刚石膜的内应力。结果表明 ,SiC层大大地增强了含碳粒子的聚集和金刚石膜与衬底之间的粘附性 ,降低了金刚石膜与衬底之间的内应力  相似文献   

14.
Although large focus has been placed into the deposition of nanocrystalline and ultra-nanocrystalline diamond films, most of this research uses microwave plasma assisted CVD systems. However, the growth conditions used in microwave systems cannot be directly used in hot-filament CVD systems. This paper, aims to enlarge the knowledge of the diamond film depositing process. H2/CH4/Ar gas mixtures have been used to deposit micro, nano and ultra-nanocrystalline diamond films by hot-filament CVD systems. Additionally, the distance between the filaments array and the substrate was varied, in order to observe its effect and consequently the effect of a lower substrate temperature in the nucleation density and deposition. All the samples were characterized for microstructure and quality, using scanning electron microscopy and Raman spectroscopy.  相似文献   

15.
New method for nucleation of different nanocrystalline carbon films upon monocrystalline Si substrate was proposed. The process is based on a combination of microwave and radio frequency plasma assisted chemical vapor deposition methods. Potential of the method for nucleation was demonstrated by deposition of nanocrystalline diamond film in pure microwave plasma in one process, immediately after "seeding" procedure. The method was also used for growth of nanocrystalline graphite (NCG) films, which are currently under intensive investigation due to their exceptional electronic properties, particularly fine electron emission characteristics. Deposited NCG films have demonstrated remarkable electron field emission properties having current density of up to 10 A/cm2. The films have also possessed good adhesion to silicon substrate. Carbon films and nucleation layer were characterized by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy.  相似文献   

16.
The interfacial structures of diamond coatings deposited on pure titanium substrate were analyzed using scanning electron microscopy and grazing incidence X-ray diffraction. Results showed that beneath the diamond coating, there was one titanium carbide and hydride interlayer, followed by a heat-affected and carbon/hydrogen diffused Ti layer. Residual stress in the diamond coating and TiC interlayer under different process parameters were measured using Raman and X-ray diffraction (XRD) methods. Diamond coatings showed large compressive stress on the order of a few giga Pascal. XRD analysis also showed the presence of compressive stress in the TiC interlayer and tensile stress in the Ti substrate. With increasing deposition duration, or decreasing plasma power and concentration of CH4 in gas mixture, the compressive residual stress in the diamond coating decreased. The large residual stress in the diamond coating resulted in poor adhesion of the coatings to substrate, but adhesion was also related to other factors, such as the thickness and nature of the TiC interlayer, etc. A graded interlayer design was proposed to lower the thermal stress, modify the interfacial structure and improve the adhesion strength.  相似文献   

17.
无支撑、光学级MPCVD金刚石膜的研制   总被引:1,自引:0,他引:1  
利用引进的6 kW微波等离子体化学气相沉积设备,进行了无支撑金刚石膜工艺的初步研究。在800~1050℃的基片温度范围内,金刚石膜都呈(111)择优取向;基片相对位置对沉积较大面积、光学级金刚石膜至关重要。制出0.25 mm厚Φ50 mm的无支撑金刚石膜。拉曼光谱和X射线衍射分析表明,合成的金刚石膜晶体结构完整,sp2含量极低;透过率测试结果说明了优良的光学性能:截止波长225 nm,光学透过率(λ≥2.5μm)≥70%。  相似文献   

18.
《Materials Letters》2007,61(11-12):2139-2142
Titanium and Ti alloys have poor tribological properties and deposition of a well adherent diamond coating is a promising way to solve this problem. But diamond film deposition on pure titanium and Ti alloys is always difficult due to the high diffusion coefficient of carbon in Ti, the large mismatch in their thermal expansion coefficients, the complex nature of the interlayer formed during diamond deposition, and the difficulty of achieving very high nucleation density. A nano-crystalline diamond (NCD) film can resolve Ti and Ti alloys weak tribological performance due to its smooth surface. A well-adhered NCD film was successfully deposited on pure Ti substrate by using a microwave plasma assisted chemical vapor deposition (MWPCVD) system in the environment of Ar, CH4 and H2 gases at a moderate temperature. Detailed experimental results on the preparation, characterization and successful deposition of the NCD film on pure Ti are discussed.  相似文献   

19.
研究了衬底温度、核化密度、衬底表而预处理等工艺参数对微波等离子体化学气相沉积法在硅片上同时生长碳化硅和金刚石的影响.采用扫描电镜、X-射线衍射、喇曼光谱和红外光谱对样品进行了表征.结果表明:从高核化密度生长的金刚石膜中探测不到碳化硅;不论对硅衬底进行抛光预处理还是未抛光预处理,从低核化密度牛长的金刚石厚膜中总能探测到碳化硅.碳化硅生长在硅衬底上未被金刚石覆盖的地方,或者是在金刚石晶核之间的空洞处.碳化硅形成和金刚石生长是同时发生的两个竞争过程.此研究结果为制备金刚石和碳化砟复合材料提供了一种新的方法.  相似文献   

20.
Diamond film was grown on high thermal conductivity graphite substrate using microwave plasma chemical vapour deposition method. Nanodiamond particles were uniformly seeded on the substrate to generate high nucleation density by a spray gun. The continuous and high purity diamond film was obtained, and growth rate was up to 2.7 μm h??1. The thickness, surface morphology, quality and composite phase of the film were analysed by SEM, Raman and X-ray diffraction. It was shown that graphite coated with diamond presented a higher thermal conductivity (520?W?m??1 k??1) than copper. Furthermore, this coated material with high thermal conductivity, good strength and non-conductive surface will make it possible to be widely used in thermal management field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号