首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
研究了D-木糖、L-阿拉伯糖、海藻糖、棉籽糖、水苏糖、赤藓糖醇、异麦芽酮糖醇、山梨糖醇、木糖醇以及麦芽糖醇等小分子糖及糖醇对α-葡萄糖苷酶活性的抑制作用,以期为降糖营养食品的开发提供参考。通过高效液相色谱法,确定α-葡萄糖苷酶对糖及糖醇的分解作用,进一步检测各种糖及糖醇在蔗糖底物存在下对α-葡萄糖苷酶的抑制作用,将抑制效果较好的糖及糖醇进行复配,利用Calcusyn软件计算复配结果,观察样品的相互作用。D-木糖、L-阿拉伯糖、海藻糖、赤藓糖醇、异麦芽酮糖醇、山梨糖醇均能抑制α-葡萄糖苷酶的活性,且D-木糖、L-阿拉伯糖、海藻糖、赤藓糖醇、异麦芽酮糖醇以及山梨糖醇的IC50值分别为23.89 mg/mL、15.03 mg/mL、9.75 mg/mL、3.19 mg/mL、20.64 mg/mL、106.19 mg/mL。赤藓糖醇分别与海藻糖、异麦芽酮糖醇复配后对α-葡萄糖苷酶的抑制作用明显增强(联合指数CI1),表现出协同效应。结论:赤藓糖醇与海藻糖或异麦芽酮糖醇复配后(CI1)有助于增强对α-葡萄糖苷酶的抑制作用。  相似文献   

2.
蛹虫草多糖对α-葡萄糖苷酶活性的抑制研究   总被引:1,自引:1,他引:0       下载免费PDF全文
本文以蛹虫草子实体为原料,通过建立a-葡萄糖苷酶抑制剂体外验证模型,以麦芽糖作为反应底物,阿卡波糖作为阳性对照,利用体外酶促反应方法,对通过水提、脱色、醇沉、除蛋白及色谱柱纯化得到的不同纯度的蛹虫草多糖的α-葡萄糖苷酶抑制活性进行了验证。结果表明,通过逐步的酶促反应实验,确定蛹虫草中对α-葡萄糖苷酶活性具有较显著抑制作用的功能成分为多糖,并且随着多糖纯度的不断提高其抑制率随之提高。通过对经色谱层析柱纯化后蛹虫草多糖进一步的酶促反应实验研究,表明蛹虫草多糖对α-葡萄糖苷酶的抑制率随多糖浓度的提高而提高,说明蛹虫草多糖的抑制效应存在一定的剂量依赖性,纯化后的多糖对α-葡萄糖苷酶的半数抑制浓度(IC50)为4.22 mg/m L,呈现出良好的降血糖功能,为今后将蛹虫草开发为降血糖药物及保健品提供了一定的理论依据。  相似文献   

3.
本研究探索了五味子中总木脂素、总黄酮、总三萜及五味子醇乙、五味子甲素、五味子醇甲、五味子酯甲对α-葡萄糖苷酶活性的抑制作用。利用体外α-葡萄糖苷酶活性抑制模型,以4-硝基苯-α-D-吡喃葡萄糖苷(PNPG)为底物,阿卡波糖(ACAR)为阳性对照,测定了五味子中总木脂素、总黄酮、总三萜及五味子醇乙、五味子甲素、五味子醇甲、五味子酯甲对α-葡萄糖苷酶活性的体外抑制作用。五味子中总木脂素、总黄酮、总三萜浓度为1.0 mg/m L对α-葡萄糖苷酶抑制率分别为96.15±1.52%、60.33±1.84%和48.62±2.15%,五味子醇乙、五味子甲素、五味子醇甲和五味子酯甲浓度为0.33 mg/m L对α-葡萄糖苷酶活性的抑制率分别为96.53±1.62%、68.48±1.83%、15.57±2.37%和6.24±2.49%。五味子中总木脂素及五味子醇乙均对α-葡萄糖苷酶活性有显著抑制作用,且具有明显的量效关系。  相似文献   

4.
α-葡萄糖苷酶抑制剂筛选及其抑制类型研究   总被引:1,自引:0,他引:1  
采用体外筛选模型,从多糖和多酚中筛选高效的α-葡萄糖苷酶抑制剂。以PNPG为底物,测定各物质对α-葡萄糖苷酶的抑制作用,计算IC50。根据IC50值,对抑制效果较好的抑制剂采用LineweaverBurk(L-B)作图法确定其抑制反应的类型。结果表明:原花青素和染料木黄酮对α-葡萄糖苷酶的抑制效果较好,IC50分别为4.81μg/mL和10.19μg/mL。原花青素对α-葡萄糖苷酶的抑制类型为竞争性抑制,抑制常数Ki为4.728mg/L;染料木黄酮对α-葡萄糖苷酶的抑制类型为非竞争性抑制,抑制常数Ki为11.090mg/L。  相似文献   

5.
为了比较研究各种提取方法下的3种苦荞黄酮对α-葡萄糖苷酶的抑制作用,分别对苦荞总黄酮溶液、苦荞水溶性黄酮溶液、苦荞醇溶性黄酮溶液用α-葡萄糖苷酶进行体外活性抑制作用实验,并绘制抑制曲线,所得的结果与阿卡波糖进行比较。结果表明:阿卡波糖、苦荞总黄酮溶液、苦荞水溶性黄酮溶液、苦荞醇溶性黄酮溶液对α-葡萄糖苷酶均有抑制作用,且抑制作用均优于阿卡波糖,其半抑制浓度(IC50)分别为0.85、0.026、0.037、0.057 mg/mL。为3种提取产物在防治糖尿病及其并发症等方面的应用提供参考,具有较大的理论意义和应用价值。  相似文献   

6.
采用体外抑制模型方法评价竹叶椒生物碱对α-葡萄糖苷酶(酵母菌来源、小鼠小肠来源)抑制作用,并采用Lineweaver-Burk双倒数法分析其抑制α-葡萄糖苷酶活性的机制。结果显示,竹叶椒脂溶性生物碱和水溶性生物碱都对α-葡萄糖苷酶有一定的抑制作用。竹叶椒脂溶性生物碱和水溶性生物碱对酵母来源α-葡萄糖苷酶IC50(半数抑制浓度)分别为(0.73±0.17) mg/mL、(2.74±0.28) mg/mL;脂溶性生物碱对小鼠小肠来源α-葡萄糖苷酶的IC_(50)为(1.94±0.13) mg/mL。动力学研究表明,竹叶椒生物碱提取物对α-葡萄糖苷酶的抑制作用类型为典型的非竞争性抑制。竹叶椒生物碱对α-葡萄糖苷酶有较好的抑制作用,为进一步的开发利用提供强有力的理论依据。  相似文献   

7.
目的研究榅桲子不同提取部位对α-葡萄糖苷酶的抑制活性及其正常小鼠糖耐量的影响。方法以4-硝基酚基α-D-吡喃葡萄糖苷(4-nitrobenzophenone-α-D-glucopyr anoside,PNPG)为底物,测定榅桲子乙酸乙酯、正丁醇、水部位α-葡萄糖苷酶的抑制活性,并对筛选出的活性强的部位进行酶动力学研究;考察各部位对蔗糖负荷小鼠糖耐量的影响。结果酶活性抑制实验显示,榅桲子乙酸乙酯部位及水部位对α-葡萄糖苷酶的抑制活性最强(IC50值分别为43.1、5.8),且乙酸乙酯部位抑制类型属于混合型抑制,水部位抑制类型属于竞争性抑制。糖耐量实验结果表明,榅桲子乙酸乙酯、水部位在15、30、60min明显降低蔗糖负荷的正常小鼠糖耐量,且其作用比阿卡波糖强。结论榅桲子乙酸乙酯、水部位中含有抑制α-葡萄糖苷酶活性的成分,可用于糖尿病治疗。  相似文献   

8.
利用α-葡萄糖苷酶抑制剂阻止碳水化合物在体内的消化吸收,是治疗糖尿病的1种有效方式。采用体外α-葡萄糖苷酶抑制模型,以阿卡波糖为阳性对照,对香蕉花中不同极性组分进行活性评价。结果表明:各组分对α-葡萄糖苷酶均有一定抑制活性,其中石油醚部分对-葡萄糖苷酶的抑制作用最强,IC50达788.36 g/mL,低于对照阿卡波糖(IC50=999.31μg/mL),乙酸乙酯(IC50=1 877.77μg/mL)和正丁醇部分(IC50=2 117.78μg/mL)活性次之。该提取物最高活性部分对α-葡萄糖苷酶的抑制类型为竞争性抑制,根据Lineweaver-Burk方程求得Ki值为250.70μg/mL;对石油醚部分进行GC-MS分析,鉴定出29种化合物,主要化学成分为有机酸类(71.58%)、酯类(13.01%)、胺类(5.88%)、醛类(1.52%)、酮类(0.42%)化合物。  相似文献   

9.
目的:研究草果甲醇溶出物对α-葡萄糖苷酶的抑制作用及对小鼠高血糖的调节作用.方法:采用4-硝基酚-α-D-吡喃葡萄糖苷法(PNPG),以阿卡波糖为阳性对照,进行α-葡萄糖苷酶体外抑制试验,评估草果甲醇溶出物的α-葡萄糖苷酶抑制率.用高脂饲料喂养小鼠构建异常血糖小鼠模型,在高脂饲料基础上,分别添加100、200 mg/k...  相似文献   

10.
研究槟榔提取物对α-葡萄糖苷酶的抑制作用,并采用Lineweaver-Burk双倒数法分析其动力学性质。结果表明,槟榔壳、槟榔籽和槟榔花提取物对α-葡萄糖苷酶活性均具有一定的抑制作用,其半数抑制浓度IC50分别为(2.87±0.48)mg/mL、(1.50±0.31)μg/mL和(4.00±0.53)mg/mL,其中槟榔籽提取物的抑制作用明显高于阳性对照阿卡波糖[IC50为(0.71±0.09)mg/mL]。对提取物中多酚、多糖等成分进行分析,发现槟榔籽提取物中具有较高含量的多酚及多糖,含量分别为(441.73±4.79)mg/g和(411.47±6.01)mg/g。动力学试验结果表明,槟榔壳及槟榔籽提取物对酶活性的抑制作用类型为竞争与非竞争的混合型抑制,而槟榔花提取物对酶活性的抑制作用类型为竞争与反竞争的混合型抑制。试验结果表明槟榔籽提取物对α-葡萄糖苷酶活性的抑制效果显著,具有很好的开发利用价值。  相似文献   

11.
为探究化橘红柚皮苷对α-葡萄糖苷酶活性的抑制作用和清除DPPH自由基能力,采用体外α-葡萄糖苷酶抑制模型,测定化橘红柚皮苷对α-葡萄糖苷酶的抑制能力及清除DPPH自由基能力,并分析其对α-葡萄糖苷酶活性的抑制作用类型。结果表明,化橘红柚皮苷对α-葡萄糖苷酶活性的抑制作用优于阿卡波糖,柚皮苷主要以剂量依赖性、时间依赖性的方式抑制α-葡萄糖苷酶的活性,其对α-葡萄糖苷酶的半抑制浓度(IC_(50))为0.008 mg/mL,阿卡波糖的IC50为0.026 mg/mL,且其对α-葡萄糖苷酶的抑制作用表现为竞争性、可逆抑制,同时0.08 mg/mL浓度的柚皮苷具有较好的DPPH自由基清除能力。基于化橘红柚皮苷具有一定的抗氧化活性及对α-葡萄糖苷酶具有较强的抑制作用,可将其进一步用于天然抗氧化剂和α-葡萄糖苷酶抑制剂的开发。  相似文献   

12.
白藜芦醇因具有广泛的生物活性而备受重视,有报道称白藜芦醇有降血糖的功效。α-葡萄糖苷酶抑制剂能够降低血糖含量,有效防治II型糖尿病。因此,为了确定白藜芦醇的降血糖机制,研究白藜芦醇与α-葡萄糖苷酶活性的关系,本研究采用分光光度法测定α-葡萄糖苷酶活力,采用双倒数作图法研究白藜芦醇的酶抑制动力学,并采用对接模拟方法对白藜芦醇与α-葡萄糖苷酶的结合模式进行探讨。结果表明:白藜芦醇非竞争性地抑制α-葡萄糖苷酶活性,且有较强的抑制作用,半抑制浓度(half maximal inhibitory concentration,IC50)为5.047 μmol/L,抑制常数为5.743 μmol/L,明显强于阳性对照阿卡波糖(IC50=632.6 μmol/L);对接模拟结果表明其与α-葡萄糖苷酶有多种可能的结合模式,且都不影响阿卡波糖与α-葡萄糖苷酶的结合。因此,白藜芦醇有被开发为降糖药物的潜力,也可作为膳食补充剂发挥一定的降血糖功效。  相似文献   

13.
为了研究蜂胶对餐后血糖控制机理,本实验采用体外α-葡萄糖苷酶抑制模型研究蜂胶乙醇提取物对α-葡萄糖苷酶的抑制作用,并采用Lineweaver-Burk双倒数法研究其动力学性质。结果表明,蜂胶乙醇提取物对α-葡萄糖苷酶的半数抑制浓度(IC50)为(0.8260±0.1754)mg/mL,抑制常数(KI)为(0.0265±0.0060)mg/mL。动力学研究表明,蜂胶乙醇提取物对α-葡萄糖苷酶的抑制作用为典型的非竞争性抑制。  相似文献   

14.
本研究探讨金银花花蕾中3,5-二咖啡酰奎宁酸(3,5-DCQA)对α-葡萄糖苷酶的抑制作用。通过色谱方法从金银花花蕾50%甲醇提取物中分离获得3,5-DCQA,并用质谱与核磁等光谱分析对其化学结构进行鉴定。分别选取大鼠小肠I型及酿酒酵母、面包酵母、嗜热脂肪芽孢杆菌的II型α-葡萄糖苷酶研究3,5-DCQA对不同α-葡萄糖苷酶抑制活性的选择性,结果表明该物质对α-葡萄糖苷酶的抑制作用与酶的来源有关,并选择性地抑制小肠α-葡萄糖苷酶的麦芽糖水解活性。动力学实验结果揭示3,5-DCQA非竞争性地抑制小肠麦芽糖酶活性(Ki:0.22 m M)。此外,物质结构与活性关系(SAR)的研究显示,3,5-DCQA中咖啡酰氧基团数目与活性有关,其中所含两个咖啡酰氧基团对α-葡萄糖苷酶的抑制活性起关键性作用。因此金银花花蕾中的3,5-DCQA可用于辅助降低餐后高血糖类功能食品的开发与利用。  相似文献   

15.
目的:探究玉蜀黍不同部位(须、秸秆皮、秸秆芯)提取物对α-葡萄糖苷酶和α-淀粉酶活性抑制作用.方法:采用常规理化方法测定玉蜀黍不同部位中总黄酮、总皂苷、总多糖、总蛋白质提取物的含量,酶底物反应法和3,5-二硝基水杨酸比色法测定α-葡萄糖苷酶和α-淀粉酶抑制活性,考察不同pH、温度、时间对α-葡萄糖苷酶和α-淀粉酶活性影...  相似文献   

16.
研究了白茅根多糖的抗氧化活性和对α-葡萄糖苷酶的抑制活性,以总还原能力、ABTS自由基清除率、羟基自由基清除率3项指标来评价白茅根多糖的抗氧化活性,并与VC进行比较,采用体外α-葡萄糖苷酶抑制模型,测定白茅根多糖对α-葡萄糖苷酶的抑制作用。结果表明,白茅根多糖的还原能力低于VC,对ABTS自由基有较好的清除作用,IC50为0.029 8 mg/mL,对羟基自由基有清除作用,IC50为1.1 mg/mL。白茅根多糖对α-葡萄糖苷酶的抑制作用较低。  相似文献   

17.
西青果提取物对α-葡萄糖苷酶抑制活性的研究(Ⅲ)   总被引:1,自引:0,他引:1  
研究西青果提取物对小肠α-葡萄糖苷酶的抑制作用。西青果提取物在体外和小肠模型人类结肠Caco-2细胞中,显示很强的麦芽糖酶抑制活性,而对蔗糖酶的抑制作用不显著。在体内实验中,西青果提取物能降低SD雄性大鼠进食麦芽糖30min后的血糖,而对进食蔗糖后的血糖浓度没有影响。实验结果表明西青果提取物可以预防Ⅱ型糖尿病。  相似文献   

18.
α-葡萄糖苷酶抑制剂能抑制碳水化合物水解,是高血糖人群降低餐后血糖的常用物质。本文基于α-葡萄糖苷酶-PNPG体外反应体系,建立了微量、快速的α-葡萄糖苷酶抑制剂筛选模型,该模型的主要参数如下:酶浓度为0.05 U/mL;底物浓度范围为0.05~1mM;反应温度为37℃;反应时间为6 min。以该模型检测了阿卡波糖对α-葡萄糖苷酶的抑制作用,并采用Lineweaver-Burk Plots、Eadie-Hofstee Plots、Hanes-Wolff Plots、Eisenthal-Cornish-Bowden Direct Plots、Non-linear Regression Analysis五种方法对该酶促反应的动力学数据进行了详细的分析。通过对数据处理的过程和结果的比较发现,该五种方法各有特点,各法所获得的V_(max)、K_m和K_i存在一定的差异,Non-linear-Regression Analysis法更加简便、合理及可靠,是酶动力学数据处理的首选方法。采用Non-linear-Regression Analysis法计算,该模型中酶促反应的V_(max)为3.91×10~(-6) mmol/min,K_m为0.12 mM,阿卡波糖的K_i为90μM。  相似文献   

19.
采用酶活动力学、荧光光谱、圆二色谱和分子对接等技术系统探究芹菜素-8-C-葡萄糖苷对α-淀粉酶和α-葡萄糖苷酶活性调控效果及机制。结果显示,芹菜素-8-C-葡萄糖苷对α-葡萄糖苷酶有良好的抑制效果,IC50值为293.5 mg/L,抑制类型为非竞争性抑制。但对α-淀粉酶无显著抑制效果。荧光光谱结果表明芹菜素-8-C-葡萄糖苷可作为猝灭剂分子与α-葡萄糖苷酶结合,发生静态猝灭,改变酶蛋白氨基酸疏水环境。圆二色谱则显示芹菜素-8-C-葡萄糖苷和α-葡萄糖苷酶之间的相互作用使酶分子的二级结构变得松散,α-螺旋和β-转角下降。分子对接结果进一步证实芹菜素-8-C-葡萄糖苷和α-葡萄糖苷酶之间作用力主要为氢键,最低结合能为-7.2 kcal/mol。本研究揭示了芹菜素-8-C-葡萄糖苷对淀粉消化酶尤其是α-葡萄糖苷酶的抑制作用机制,为未来将芹菜素-8-C-葡萄糖苷作为健康食品辅料或药物开发提供一定理论基础。  相似文献   

20.
南瓜多糖对α-葡萄糖苷酶抑制作用的研究   总被引:2,自引:0,他引:2  
实验目的:通过南瓜多糖(Pumpkin Polysaccharide,PP)对α-葡萄糖苷酶活性的影响,探讨南瓜多糖降血糖作用的可能机制.实验方法:实验依次采用加热浸提、有机溶剂分步萃取、减压浓缩、冷冻干燥等工艺方法制备南瓜多糖;提取正常大鼠小肠上段-α葡萄糖苷酶,酶活力采用P-硝基苯麦芽庚糖(PNPG)比色法进行测定,优化α-葡萄糖苷酶作用的最佳实验条件,考察南瓜多糖对α-葡萄糖苷酶活性的影响.实验结果:在实验优化的α-葡萄糖苷酶作用的反应条件下,即在反应时间2h、反应温度49℃、缓冲液pH6.0、底物PNPG浓度为10mmol/L的实验条件下,南瓜多糖对α-葡萄糖苷酶的抑制作用较弱.结论:南瓜多糖的降血糖作用不是通过抑制α-葡萄糖苷酶的活性实现的,而是通过其它途径实现的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号