首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用磁控溅射技术和退火工艺在钠钙玻璃衬底上制备了Mg_2Si半导体薄膜,研究了Mg膜厚度对Mg_2Si薄膜结构及其电学性质的影响。在钠钙玻璃上分别溅射两组相同厚度(175nm)的P-Si和N-Si膜,然后在其上溅射不同厚度Mg膜(240nm、256nm、272nm、288nm、304nm),低真空退火4h制备一系列Mg_2Si半导体薄膜。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、霍尔效应测试仪对Mg_2Si薄膜的晶体结构、表面形貌、电学性质进行表征与分析。结果表明:采用磁控溅射技术在钠钙玻璃衬底上成功制备出以Mg_2Si(220)为主的Mg_2Si薄膜。随着沉积Mg膜厚度的增加,Mg_2Si衍射峰逐渐增强,薄膜表面更连续,电阻率逐渐减小,霍尔迁移率逐渐降低,载流子浓度逐渐增加。此外,Si膜导电类型和Mg膜厚度共同影响Mg_2Si薄膜的导电类型。溅射N-Si膜时,Mg_2Si薄膜的导电类型随着Mg膜厚度的增加由P型转化为N型;溅射P-Si膜时,Mg_2Si薄膜的导电类型为P型。可以控制制备的Mg_2Si半导体薄膜的导电类型,这对Mg_2Si薄膜的器件开发有着重要的指导意义。  相似文献   

2.
采用溶胶-凝胶法和浸渍提拉法成功制备了Al掺杂ZnO薄膜(以下简称AZO薄膜)。用X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)、分光光度计、霍尔(Hall)测量仪,分别研究了不同Al的掺杂浓度对薄膜的结晶性能、微观形貌和光电性能的影响,探讨了Al的掺杂机理。结果表明,Al的掺杂存在最佳值,当Al掺杂摩尔浓度为5%时,AZO薄膜的结晶性能、微观形貌和光电性能最佳,其透光率在80%以上,电阻率为2.1×102Ω·cm,霍尔迁移率为0.23cm2/V·s,载流子浓度为7.81×1014cm-3。  相似文献   

3.
采用射频磁控溅射技术,在室温下,以ZnO∶Al203(2%Al2O3(质量比))为靶材,在石英玻璃基底上,采用不同工艺条件制备了ZnO∶Al(AzO)薄膜.使用扫描电子显微镜观察了薄膜的表面形貌,X射线衍射分析了薄膜的结构,四探针测量仪得到薄膜的表面电阻,轮廓仪测量了薄膜厚度,并计算了电阻率,最后采用分光光度计测量了薄膜的透过率;研究了溅射功率、溅射气压与薄膜厚度对薄膜电阻率及透过率的影响.结果表明:所制备的AZO薄膜具有(002)择优取向,并且发现薄膜厚度对薄膜的光电性能有明显影响,溅射气压和溅射功率对薄膜电学性能有较大影响,但是对薄膜透过率影响不大.当功率为1kW、溅射气压0.052 Pa、AZO薄膜厚度为250nm时,其电阻率为8.38×10-4Ω·cm,波长在550 nm处透过率为89%,接近基底的本底透过率92%.当薄膜厚度为1125 nm时薄膜的电阻率降至最低(6.16×10-4 Ω·cm).  相似文献   

4.
以铝掺杂质量分数为1%、2%、3%的Zn/Al合金为靶材,采用直流反应磁控溅射技术在玻璃衬底上制备了不同铝含量ZnO:Al(AZO)透明导电薄膜。研究了衬底温度对AZO薄膜电学性能的影响;同时,研究铝掺杂量不同、电阻率相同的AZO薄膜的载流子浓度与迁移率的关系。结果表明:随着Al掺杂量的增加,薄膜最佳性能(透过率90%,电阻率6×10-4Ω·cm左右)时的衬底温度值会降低;电阻率相同的样品,1%铝掺杂的薄膜迁移率和透光率均高于2%铝掺杂薄膜的。  相似文献   

5.
基体温度对磁控溅射沉积ZAO薄膜性能的影响   总被引:8,自引:2,他引:6  
利用中频交流磁控溅射方法 ,采用氧化锌铝陶瓷靶材 [w(ZnO) =98%、w(Al2 O3 ) =2 % ]制备了ZAO(ZnO∶Al)薄膜 ,观察了基体温度对ZAO薄膜的晶体结构、电学和光学性能的影响 ,采用X射线衍射仪对薄膜的结构进行了分析 ,采用光学分度计和电阻测试仪测量了薄膜的光学、电学特性 ,采用霍尔测试仪测量了薄膜的载流子浓度和霍尔迁移率。结果表明 :沉积薄膜时的基体温度对薄膜的结构、结晶状况、可见光透射率以及导电性有较大的影响。当基体温度为 2 5 0℃ ,Ar分压为 0 8Pa时 ,薄膜的最低电阻率为 4 6× 10 -4Ω·cm ,方块电阻为 35Ω时 ,可见光 (λ =5 5 0nm)透射率高达 92 0 %。  相似文献   

6.
郑旭  张晋敏  熊锡成  张立敏  赵清壮  谢泉 《功能材料》2012,43(11):1469-1471
采用直流磁控溅射和真空退火方法制备β-FeSi2/Si异质结,首先在n型Si(100)衬底上沉积Fe膜,经真空退火形成β-FeSi2/Si异质结,Fe膜厚度约238nm,退火后形成的β-FeSi2薄膜厚度约为720nm。利用XRD、SEM和红外光谱仪分别研究了β-FeSi2薄膜的晶体结构、表面形貌和光学性质。霍尔效应结果表明,制备的β-FeSi2薄膜为n型导电,载流子浓度为9.51×1015cm-3,电子迁移率为380cm2/(V.s)。  相似文献   

7.
采用射频磁控溅射法在聚丙烯己二酯有机薄膜(polypropylene adipate, PPA)衬底上低温制备出锑掺杂的氧化锡(SnO2∶Sb)透明导电膜.研究了薄膜的厚度效应对SnO2∶Sb薄膜的结构、光学和电学特性的影响.制备薄膜为多晶膜,并且保持了纯二氧化锡的金红石结构.载流子浓度和迁移率随着薄膜厚度的增加而增大,电阻率随着薄膜厚度的增加而减小,最低电阻率为 2×10-3Ω*cm.  相似文献   

8.
采用射频磁控共溅射的方法制备出ZnO∶Al薄膜,以NO和O2为源气体(O2/O2+NO=75%)、等离子体浸没离子注入(PIII)方法在不同的工艺条件下得到了不同N+注入剂量的ZnO∶Al∶N薄膜,并在N2氛围下对样品进行了850℃退火处理。通过XRD图谱、霍尔效应(Hall)测试结果、光致发光光谱(PL)、紫外-可见光透射光谱等对样品的结构和性能进行了分析,着重研究了N+注入剂量对ZnO∶Al∶N薄膜性质的影响。结果表明,注入剂量控制在1015cm-2量级时,N可以通过占据O空位和替换O原子形成NO并与Al和Zn成键,对于ZnO薄膜实现p型反转是很关键的。实现p型反转的ZnO∶Al∶N薄膜载流子浓度可达2.16×1016cm-3,电阻率为8.90Ω.cm,霍耳迁移率为32.4cm2/V.s。  相似文献   

9.
利用直流磁控溅射法在玻璃衬底上制备了ZnO∶Zr(ZZO)透明导电薄膜。研究了厚度对薄膜结构及光电性能的影响。研究结果表明,厚度对薄膜的结构和电学性能有很大的影响。制备的ZZO薄膜为六角纤锌矿结构的多晶薄膜,具有c轴择优取向。在厚度为593nm时,薄膜的电阻率具有最小值1.9×10-3Ω·cm。所制备薄膜样品的可见光平均透过率都超过93%。  相似文献   

10.
室温下射频磁控溅射制备ZnO:Al透明导电薄膜及其性能研究   总被引:1,自引:0,他引:1  
采用射频磁控溅射技术,在室温下,以ZnO:Al2O3(2%Al2O3(质量比))为靶材,在石英玻璃基底上,采用不同工艺条件制备了ZnO:Al(AZO)薄膜。使用扫描电子显微镜观察了薄膜的表面形貌,X射线衍射分析了薄膜的结构,四探针测量仪得到薄膜的表面电阻,轮廓仪测量了薄膜厚度,并计算了电阻率,最后采用分光光度计测量了薄膜的透过率;研究了溅射功率、溅射气压与薄膜厚度对薄膜电阻率及透过率的影响。结果表明:所制备的AZO薄膜具有(002)择优取向,并且发现薄膜厚度对薄膜的光电性能有明显影响,溅射气压和溅射功率对薄膜电学性能有较大影响,但是对薄膜透过率影响不大。当功率为1kW、溅射气压0.052Pa、AZO薄膜厚度为250nm时,其电阻率为8.38×10-4Ω·cm,波长在550nm处透过率为89%,接近基底的本底透过率92%。当薄膜厚度为1125 nm时薄膜的电阻率降至最低(6.16×10-4Ω·cm)。  相似文献   

11.
ZnO:Al透明导电薄膜的研制   总被引:2,自引:0,他引:2  
介绍用直流平面磁控溅射方法制备掺铝的氧化锌透明导电薄膜并研究了其特性,阐述了金属氧化物透明导电薄膜研究的发展情况及其应用前景,并讨论了氧化锌掺铝薄膜的优点。介绍了ZnO∶Al薄膜的制备情况:靶的制备及薄膜的制备过程。测量了薄膜的光电特性,包括透射比、折射率、消光系数、方块电阻、电阻率、载流子浓度和迁移率等参数,并分析了各种实验条件对薄膜性能的影响。  相似文献   

12.
采用渠道火花烧蚀技术,在普通玻璃基板上制备掺锌硫化铜铝CuAl0.90Zn0.10S2透明导电薄膜.运用X射线衍射法(XRD)和原子力显微镜(AFM)分析薄膜的晶体结构和表面形貌.研究不同的制备条件对薄膜光电性能的影响.结果显示,薄膜表面平整致密,均为p型导电.氩气压强和基板温度对薄膜的电阻率和载流子浓度具有显著影响,例如,随着氩气压强增加,电阻率会先降低再上升,而载流子浓度则先增加再降低.在优化的制备条件下,薄膜的电阻率最小值为0.2 Ω·cm,载流子浓度为6.67×1018 cm-3,载流子迁移率最大为1.06 cm2V-1S-1.在基板温度Ts=500 ℃时,获得了室温下最高电导率为50.9 S·cm-1的薄膜.薄膜可见光区域的平均透射率大于60%.  相似文献   

13.
采用射频磁控溅射法在玻璃衬底上制备了ZnO∶Ga透明导电薄膜(GZO)。通过X射线衍射(XRD)、四探针电导率测试、紫外可见分光光度等表征方法研究了溅射功率对薄膜结晶特性及光电性能的影响。结果表明:当溅射功率180W时制备的GZO薄膜光电性能最优,方块电阻为9.8Ω/sq,电阻率为8.6×10-4Ω·cm,霍尔迁移率为12.5cm2/V·s,载流子浓度为5.8×1020cm-3,可见光透过率超过92%。另外,研究了最优制备条件下的GZO薄膜的高温稳定性,在氩气、氧气和真空气氛下分别对薄膜进行退火处理。结果表明,氩气退火的薄膜电学性能显著提高,是显著改善GZO薄膜性能的有效方法之一;氧气退火不利于薄膜的导电性;真空退火介于两者之间。  相似文献   

14.
采用磁控溅射仪在高阻Si(100)衬底上沉积了[Fe(0.5nm)/Si(1.6nm)]120和[Fe(1nm)/Si(3.2nm)]60多层膜,并在Ar气气氛下进行了1000℃,10s的快速热退火。为了比较,也进行了880℃,30min的常规退火。采用X射线衍射仪、原子力显微镜、光谱仪和霍尔效应仪分析了样品的晶体结构、表面形貌、光吸收特性和电学性能。结果表明:Fe/Si多层膜法合成的样品均为β-FeSi2相且在(220)/(202)方向择优生长;经快速热退火合成的β-FeSi2薄膜光学带隙约为0.9 eV。[Fe(1nm)/Si(3.2nm)]60多层膜经快速热退火合成的β-FeSi2薄膜表面粗糙度最小,该薄膜样品为p型导电,载流子浓度为4.1×1017cm-3,迁移率为48cm2/V.s。  相似文献   

15.
氧化锌掺钇透明导电薄膜的制备及光电特性研究   总被引:1,自引:0,他引:1  
采用射频磁控溅射法,室温下在玻璃衬底上制备出了具有良好附着性、低电阻率和高透过率的新型透明导电薄膜YZO(ZnO掺杂Y2O3简称YZO)。在薄膜厚度为600nm的情况下,研究了薄膜电学特性随溅射功率和溅射气压的变化情况。X射线衍射谱表明YZO薄膜是多晶膜,具有ZnO的六角纤锌矿结构,最佳取向为(002)方向。最佳溅射条件下制备的薄膜电阻率为8.71×10-4Ω.cm,在可见光范围内平均透过率达到92.3%,禁带宽度为3.57eV。  相似文献   

16.
以气体放电活化反应蒸发(GDARE)沉积法通过多次沉积制备不同厚度ZnO薄膜。原子力显微镜和X射线衍射测试分析表明,所得ZnO薄膜具有纳米颗粒多晶结构,粒径在30~70 nm,晶粒尺寸随薄膜厚度增加而增大,不同厚度的薄膜均具有高度的c轴取向性。由GDARE法沉积的ZnO薄膜具有较高的温差电动势率S(Seebeck系数),厚度200 nm的薄膜在440K附近S可达600μV/K。相同温度下,薄膜的温差电动势率S与电阻率ρ均随着膜厚的增加而减小。在考察了薄膜电阻率与温差电动势率的综合影响后,得到在440 K附近,厚度为600 nm的ZnO薄膜具有相对最优秀的热电性能。讨论了ZnO薄膜的表面电传导过程及温差电动势产生机制。  相似文献   

17.
随着分辨率的提高,传统金属电极在电阻率和抗氧化性能方面已经不适合作为需要高温热处理的场致发射显示器件中的薄膜电极.本文采用5.77%(原子比)Sn掺杂的ZnO∶Sn作为Ag层的保护层,利用磁控溅射法制备ZnO∶Sn/Ag/ZnO∶Sn复合薄膜及其电极,并采用X射线衍射、光学显微镜、扫描电子显微镜和电性能测试系统研究复合薄膜及其电极在经过不同温度退火后的晶体结构、表面形貌和电学性能的变化.ZnO∶Sn膜层致密,25 nm厚的ZnO∶Sn 足以保护Ag层在530℃的高温中不被明显氧化,电极电阻率低达2.0×10-8Ω·m左右.  相似文献   

18.
孙兆奇  蔡琪  吕建国  宋学萍 《功能材料》2006,37(8):1246-1248
用直流磁控溅射在室温Si基片和载玻片上制备了厚度为7.6~81.3nm超薄Au膜,用X射线衍射及数字电桥对薄膜的微结构和电学性质进行了测试分析.微结构分析表明:制备的超薄Au膜仍为面心立方多晶结构;在膜厚d<46.3nm时,(111)晶粒平均晶粒尺寸随膜厚增加逐渐增大,当d>46.3nm后,晶粒尺寸几乎保持不变,甚至有所减小;(220)晶粒的平均晶粒尺寸则总是随膜厚的增加而增大.薄膜晶格常数均比PDF标准值(0.4078nm)稍小,随膜厚增加,薄膜晶格常数由0.4045nm增大到0.4077nm.电阻率分析结果表明,随着膜厚的增加,薄膜的电阻率经历了岛状膜的极大-网状膜的急剧减小-连续膜的缓慢减小.膜厚d>46.3nm后,由于薄膜中长出新的(111)小晶粒,电阻率略有增加.  相似文献   

19.
利用射频磁控溅射ZnO:Al(3wt%)陶瓷靶材制备ZAO薄膜,利用X射线衍射仪和霍尔测试仪分析了不同衬底温度和工作压强对薄膜结构和电学性能的影响.结果表明,随工作压强的降低,薄膜(002)优先取向增强,迁移率逐渐增大,当工作压强为0.2 Pa、衬底温度为200℃时,薄膜的电阻率为1.4×10-3Ω·cm.  相似文献   

20.
用预制膜硒化法制备铜铟硒系太阳能电池的吸收层CIGSe薄膜,用X射线荧光分析(XRF)、扫描电子显微镜(SEM)、X射线衍射分析(XRD)和拉曼谱分析(Raman)以及基于霍尔效应分别测定或观测CIGSe薄膜的成分、表面形貌、结构以及电阻率和少数载流子迁移率,研究了在近玻璃软化点520-560℃区间硒化温度对薄膜成分、表面形貌、结构和电学性能的影响。结果表明:当硒化温度在520-560℃时,CIGSe薄膜的成分和表面形貌保持不变,但是随着硒化温度的升高CIGSe薄膜中有序缺陷相(ODC)和Cu-Se短路相增加,提高了薄膜内的缺陷浓度,使薄膜的少数载流子迁移率降低、电阻率增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号