首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
 提高高炉炉料中钒钛磁铁矿的配比(大于80%,甚至达到100%)对于实现攀西地区钒钛磁铁矿资源的深度开发与综合利用意义重大。针对高配比钒钛矿带来超高TiO2高炉渣的情况,提出了“以镁代钙”的新造渣理念。系统地研究了w(TiO2)和w(MgO)/ w(CaO) 对CaO-SiO2-TiO2-MgO-Al2O3渣系黏度和熔化性温度的影响规律。结果表明,惰性气氛下,随着w(TiO2)从20%增加到34%,炉渣黏度逐渐减小;随着w(MgO)/ w(CaO) 从0.32增加到0.65,炉渣黏度略有增大。炉渣熔化性温度随着w(TiO2)增加先升高后降低。“以镁代钙” w(MgO)/ w(CaO) 在0.32~0.65范围内增加时,熔化性温度呈先明显降低后略有升高的趋势, w(MgO)/ w(CaO)在0.57附近时,(w(MgO)为12%)炉渣熔化性温度达到最低点,降低幅度约为50 ℃。“以镁代钙”使得炉渣液相区从钙钛矿析出区域附近逐渐移至钙钛矿相与镁铝尖晶石相之间宽阔的区域。采用“以镁代钙” w(MgO)/ w(CaO) 造渣理念对降低超高TiO2高炉渣熔化性温度具有可行性。  相似文献   

2.
 基于混料试验中单纯形质心法建立了CaO-SiO2-Al2O3-MgO-2%TiO2渣黏度和熔化性能预测模型,利用预测模型、FactSage和X射线衍射(XRD)研究了不同w(Al2O3)含钛炉渣的冶金性能,并探讨了高Al2O3炉渣中w(MgO)/w(Al2O3)对黏度和熔化性能的影响。结果表明,炉渣黏度和熔化性能预测模型具有较高的精度,误差分别小于5%和2%。随着Al2O3质量分数由10%增加至18%,黏度(η)、熔化性温度(tM)和液相线温度(tL)均升高;低熔点相黄长石(Melilite)开始析出温度和析出量逐渐增大,高熔点相钙钛矿(CaTiO3)和低熔点相硅灰石(CaSiO3)开始析出温度先增大后减小,还析出了少量高熔点相尖晶石。当Al2O3质量分数小于15%、温度为1 450~1 525 ℃时,炉渣黏度均小于0.55 Pa·s,且温度为1 500 ℃时黏度为0.32~0.39 Pa·s,tMtL分别为1 370 ℃和1 330 ℃;Al2O3质量分数为15%~18%,炉渣析出的高熔点相CaTiO3和尖晶石较多,黏度对温度较为敏感,1 525 ℃时黏度为0.3 Pa·s左右,1 450 ℃时黏度增加至0.8 Pa·s。随着w(MgO)/w(Al2O3)由0.24增加至0.72,炉渣黏度降低,tMtL增大;Melilite开始析出温度约为1 425 ℃,CaTiO3开始析出温度由1 310 ℃大幅增加至1 394 ℃,CaSiO3析出量降低,尖晶石析出量明显增加。此外,不同w(Al2O3)和w(MgO)/w(Al2O3)炉渣基础相均为Melilite,其开始析出温度高于CaTiO3;w(Al2O3)对tM和Melilite开始析出温度影响显著,w(MgO)/w(Al2O3) 对tL和CaTiO3开始析出温度影响显著。当碱度为1.21时,高Al2O3炉渣适宜w(MgO)/w(Al2O3)为0.48~0.60,tMtL分别为1 400 ℃和1 340 ℃左右,炉渣流动性和稳定性较好。  相似文献   

3.
 为了掌握高Al2O3条件下(w(Al2O3)为15%以上)高炉渣系的熔化特性,利用差式扫描量热仪分析了不同w(MgO)/w(Al2O3)、碱度(R)以及w(Al2O3)对高铝高炉渣的熔化温度及熔化热的影响。试验结果表明,炉渣熔化开始温度为1 248~1 291 ℃、熔化结束温度为1 432~1 485 ℃、熔化热为137~211 J/g;当w(Al2O3)=15%、高w(MgO)/w(Al2O3)时,发生了共晶逆反应,导致高炉炉渣熔化开始温度逐渐降低,但由于高炉炉渣的液相线温度基本未变,所以炉渣熔化结束温度基本未发生改变;w(Al2O3)为20%时,随着w(MgO)/w(Al2O3)的增加,炉渣中易生成熔点较高的镁铝尖晶石,导致高炉炉渣熔化开始温度逐渐增大,与此同时,炉渣液相线温度逐渐降低,导致炉渣熔化结束温度逐渐降低;随着碱度R的增加,高炉炉渣中生成了具有高熔点的化合物、炉渣的液相线温度升高,使得高炉炉渣的熔化开始温度逐渐增加、炉渣熔化结束温度逐渐升高;随着w(Al2O3)的增加,发生了共晶逆反应,故炉渣的熔化开始温度逐渐降低,而随着w(Al2O3)的增加,炉渣中键能较大的Al—O键增多,需要在更高温度下才能实现炉渣的最终熔化,即熔化结束温度逐渐增加;随着w(MgO)/w(Al2O3)、R以及w(Al2O3)的增加,炉渣熔化热逐渐增多。分析认为,随着R的增加,炉渣中有高熔点化合物的生成,熔化热增加;随着炉渣中w(Al2O3)的增加,炉渣中Al—O键增多,解聚破坏熔渣结构消耗的热量增多;而随着w(MgO)/w(Al2O3)增加,高熔点化合物的生成或熔化开始温度降低,造成熔化热增加。  相似文献   

4.
通过分析了水钢100 t顶底复吹转炉炉衬的损坏机理和影响炉渣熔化性能的因素,得出每1%V2O5降低炉渣熔化温度27℃,每增加1%TiO2含量,炉渣半球温度约降低5℃,当炉渣TFe含量在20%以上时,炉渣熔化温度在1 320~1 395℃。通过采取铁水捞渣工艺;建立转炉热平衡操作模式,提高拉碳率;铁水Si在0.6%~0.8%时,采用单渣操作,铁水Si>0.8%时,采用双渣操作;建立转炉最佳炉型及控制措施;优化钢水温度制度和优化脱氧合金化制度,降低出钢温度;在补吹提枪前加入适量焦丁,确保冶炼终点炉渣中FeO保持较低含量,提高溅渣护炉效果等工艺措施,结果使转炉炼钢的耐火材料消耗降到8.75 kg/t钢,转炉炉龄达到29 336炉。  相似文献   

5.
MgO对烧结矿与高炉渣冶炼性能及工艺参数影响的试验   总被引:2,自引:0,他引:2  
MgO是高炉渣的重要成分,渣中含有一定的MgO可降低炉渣粘度,提高炉渣流动性,提高还原性以及软化和熔化温度而改善冶金性能;烧结矿含有一定数量的MgO,可降低低温还原粉化性改善高炉透气性。工业试验表明,目前条件下攀钢烧结矿提高MgO 0.2%左右,矿相结构与矿物组成改善,强度提高0.10%左右,低温还原粉化率由66.03%降低到64.33%,但还原度由84.46%下降到84.13%,烧结矿粒度约有偏差。高炉渣中MgO质量分数提高0.35%达到7.8%~8.0%,炉渣熔化性温度与粘度下降,炉渣流动性由115 mm提高到170 mm,铁损由7.09%降低到5.15%,校正后产量下降18 t/d,但综合焦比下降了6.57 kg/t,节焦效果显著,同时烧结与高炉的工艺参数得到优化。  相似文献   

6.
利用Fact Sage热力学软件Phase Diagram和Equilib模块分别计算了CaO含量对CaO-Al2O3-22% MgO-1% SiO2-2% FeO系液相线的影响以及CaO、调渣剂CaF2和B2O3单独或复合添加对Al2O3-MgO-25% CaO-1% SiO2-2% FeO系1700℃液相量的影响.通过差热分析测定了现场实验炉渣的熔化开始温度和结束温度,验证了理论计算变化规律.结果发现:电铝热法生产FeV的炉渣中CaO质量分数应该控制在25%左右,此时熔化性能较好;调渣剂CaF2的调渣效果好于B2O3,且Al2O3/MgO质量比较高时二者不能复合使用;考虑到工业应用效果和环境保护,CaF2添加量应控制在2%~5%.   相似文献   

7.
郭江  李荣 《中国冶金》2020,30(12):18-21
为了明确B2O3对高Al2O3渣稳定性的影响,基于现场高炉渣的实际成分,通过熔体物性测定仪、扫描电镜、红外光谱仪分析了B2O3对高Al2O3渣黏度和基础玻璃微观结构的影响。结果表明,随着B2O3含量的增加,炉渣黏度降低;当炉渣温度低于1 360 ℃时,炉渣随着B2O3的增加稳定性增强;炉渣温度为1 216 ℃、B2O3质量分数为2.0%时,炉渣的稳定性最好。随着B2O3含量的增加,炉渣不断玻璃化,当B2O3质量分数为2.0%时,炉渣微观结构完全是玻璃态结构,表现为假性酸性渣的性质;随着B2O3含量的增加,[Si-O-Al]键断裂,[AlO6]八面体结构振动峰增加,炉渣的稳定性越来越好。  相似文献   

8.
 随着优质铁矿资源的消耗,钢铁企业可利用铁矿原料品位逐渐降低,高铝质铁矿原料的应用导致高炉渣中Al2O3质量分数增加,已影响到高炉的正常操作。着重阐明Al2O3对高炉渣物理化学性能和结构的影响,为高铝原料的高炉冶炼提供科学依据和理论指导。首先说明了Al2O3质量分数对高炉渣熔化性温度、黏度、密度、表面张力和脱硫能力的影响,讨论了铝硅酸盐炉渣的结构以及Al2O3在炉渣结构中扮演的角色,并结合结构信息分析了炉渣结构与物理化学性质之间的关系。探讨了目前针对高Al2O3质量分数渣系高炉冶炼的工艺和可能的基于铝硅酸盐基高炉渣的造渣制度。  相似文献   

9.
基于富氧顶吹直接炼铅技术,提出硫化铅精矿搭配硫尾矿渣炼铅工艺,以实现硫尾矿渣的综合利用。熔炼过程渣型决定了炉渣的性质,进而影响熔炼过程能否顺利进行。根据熔炼过程渣相组成特点,以PbO-FeO-Fe2O3-SiO2-CaO-ZnO渣系为研究对象,采用FactSage热力学软件计算并绘制该渣系相图。研究温度、w(Fe)/w(SiO2)、w(CaO)/w(SiO2)及ZnO质量分数等因素对炉渣熔化温度及液相生成区的影响。理论研究表明,w(CaO)/w(SiO2)的变化对炉渣熔化温度的影响与w(Fe)/w(SiO2)不同,且w(CaO)/w(SiO2)影响更为显著。炉渣中ZnO质量分数在6%~14%范围内增大时,炉渣的熔化温度变化较小;但当ZnO质量分数进一步增大时,炉渣的液相区逐步减小。在保证熔炼过程顺利进行的前提下,渣中ZnO的质量分数可控制在8%~10%范围内,有利于增大炉渣的液相区面积。验证试验表明,在熔炼温度为1 150 ℃、w(CaO)/w(SiO2)= 0.3、w(Fe)/w(SiO2) =0.8条件下,采用富氧顶吹熔炼处理硫化铅精矿搭配硫尾矿渣可顺利进行,熔炼过程金属直收率为8%,渣中铅质量分数可达49.12%,烟尘率为13.18%。  相似文献   

10.
在实验室条件下,研究高炉渣中MgO及Al2O3质量分数对高炉渣冶金性能的影响规律。试验结果表明,当高炉渣碱度为1.1、MgO质量分数为12%不变时,随着Al2O3质量分数的增加,高炉渣熔化性温度逐渐增加,且当Al2O3质量分数超过17.5%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐增加而渣铁硫分配比降低;当高炉渣碱度为1.1、Al2O3质量分数为20%不变时,随着MgO质量分数的增加,熔化性温度先降低后增加,当MgO质量分数超过11.8%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐降低而渣铁硫分配比增加。  相似文献   

11.
高钛高炉渣碎石用做砼骨料的研究   总被引:3,自引:0,他引:3  
周旭  李江龙  罗崇理 《钢铁钒钛》2001,22(4):43-46,68
攀钢高炉渣TiO2含量15%以上,与普通高炉渣的组成结构有较大差异,高钛高炉渣的性质研究及其用于砼的试验说明:高钛高炉渣结构稳定,其碎石用做砼骨料与普通碎石相比,抗压强度及劈拉强度稍高于后者。此外,其运用实例也说明了高钛高炉渣砼的稳定性。开发利用高钛高炉渣对环境保护,延长攀钢渣场使用年限具有重要意义。  相似文献   

12.
含钛高炉渣熔化性温度的试验研究   总被引:1,自引:0,他引:1  
含钛高炉渣的熔化性温度是影响高炉炉渣冶金特性的关键因素。以工业生产含钛高炉渣为原料,进行正交试验研究,其结果表明:随着碱度的提高,熔化性温度上升,粘度也升高;MgO从6%增加到8%或8.5%时,熔化温度曲线温度转折点即熔化性温度从1 435℃降低到1 380℃;TiO2含量在16%~20%的条件下,渣中MgO在8%左右,Al2O3含量在9%~13%之间,TiO2对炉渣粘度与熔化性温度影响不大。  相似文献   

13.
为了研究含钛高炉初渣的形成过程和各种物相成分相互作用、迁移重组的过程,明晰TiO2对高炉初渣形成的影响规律,利用FactSage热力学软件及旋转柱体式黏度仪研究了TiO2质量分数对高炉初渣熔化温度、物相转变行为以及初渣黏度的影响。结果表明,随着初渣中TiO2质量分数的增加,含钛高炉初渣熔化温度升高,TiO2质量分数从4%增加到16%,其熔化温度从1 360升高到1 410 ℃,增加了50 ℃;含钛高炉初渣中TiO2质量分数对初渣中各种物相组成的转变和比例都有较大的影响,随着TiO2质量分数的增加,初渣固液相共存的温度区间变大,使高炉软融带变宽;TiO2对含钛高炉初渣黏度的影响相对较为复杂,当TiO2质量分数为4%~8%时,含钛高炉初渣黏度 温度曲线呈现出“碱性渣”的形态;当TiO2质量分数为16%时,含钛高炉初渣黏度 温度曲线呈现出“酸性渣”的形态。  相似文献   

14.
钒钛磁铁精矿经高炉冶炼后,其中的TiO2几乎全部进入炉渣.为了有效利用钛资源,以含TiO249.36%(质量分数)的熔分渣为原料,经加碱焙烧、酸浸和水解后,制备海绵钛生产用原料一富钛料,研究焙烧温度对TiO2浸出率的影响,以及水解酸度对钛的水解率的影响.结果表明,焙烧温度对熔分渣中TiO2的浸出率影响很大:在低于1 000℃温度下加碱焙烧后钛的浸出率不高,而在1 300℃加碱焙烧后钛的浸出率高达92.2%;通过控制最终的水解酸度,钛的水解率可达91.5%,水解后产物为白色或浅黄色,颗粒较细,粒度为0.2~0.5 μm,TiO2品位达98.50%,可作为生产海绵钛的原料.  相似文献   

15.
采用偏光显微镜对不同TiO_2含量(7%~16%)的高炉渣矿相结构进行系统研究。结果表明,炉渣显微结构为斑状结构、似斑状结构;斑晶矿物主要为巴依石和黄长石,基质为玻璃质、细小钛辉石、钙钛矿以及少量的金属Fe、TiC、TiN及其固溶体;随着TiO_2配加量的增大,炉渣中巴依石和钛辉石含量先降低后升高,而黄长石含量先升高后降低;当TiO_2含量超过12%以后,炉渣基质中TiC、TiN及其固溶体的含量有所增加,这些高熔点化合物会使炉渣的黏度和熔化性温度升高,导致高炉渣的流动性变差。该研究成果可为改善含钛高炉渣的流动性能提供重要的理论依据。  相似文献   

16.
It was very difficult for the smelting of vanadium-bearing titanomagnetite by blast furnace because the content of TiO2 of blast furnace slag could amount to 20%-25%.After long term development and continuous improvement,special intensified smelting technologies for vanadium-bearing titanomagnetite by blast furnace were obtained and improved gradually.With the improvement of beneficiated material level and equipment level,smelting intensity has been increased gradually and the highest comprehensive smelting...  相似文献   

17.
  It was very difficult for the smelting of vanadium bearing titanomagnetite by blast furnace because the content of TiO2 of blast furnace slag could amount to 20%-25%. After long term development and continuous improvement, special intensified smelting technologies for vanadium bearing titanomagnetite by blast furnace were obtained and improved gradually. With the improvement of beneficiated material level and equipment level, smelting intensity has been increased gradually and the highest comprehensive smelting intensity reached 145 t/(m3·d). Technical economic indexes of blast furnace have also been increased remarkably. The highest utilization coefficient exceeded 27 t/(m3·d) on the condition that the burden grade was only about 50%.  相似文献   

18.
分析了2500 m3高炉冶炼含钒钛铁矿炉渣的铁损高于普通渣的主要原因.随着渣中TiO2含量升高,高炉渣变稠,料柱透气性变差,会产生一系列负面反应,最终造成铁损增加,生产成本增加;提出了降低铁损的措施.  相似文献   

19.
攀枝花地区钒钛磁铁精矿经直接炼铁后,其中的钛几乎全部进入渣中,形成了TiO2含量达48.01%的高炉渣,高炉渣中的Ti02在直接炼铁过程中与MgO和Fe2O3等其它氧化物结合形成了复杂的钛酸盐化合物,常规酸浸法除杂效果不理想。实验采用加碱焙烧后,5%盐酸浸出的工艺制备富钛料,通过研究焙烧温度和碱添加比对浸出除杂的影响,实验结果表明高炉渣按50%的碱渣比和1000℃条件下焙烧后浸出,浸出渣中TiO2品位达75.65%且大多留存在渣中。该工艺具有渣处理成本低、产生的废酸量少等突出优点,是综合利用含钛高炉渣的一个可行途径。  相似文献   

20.
 为明确TiO2对京唐炉渣性能的影响机理,基于京唐高炉渣的实际成分,通过黏度试验研究了TiO2对炉渣黏度及熔化性温度的影响;同时利用FactSage热力学软件,计算了不同TiO2质量分数炉渣的活度、熔化温度,液相区以及炉渣从1 500冷却到1 000 ℃时的物相变化。试验结果表明,炉渣的黏度和熔化性温度随着渣中TiO2质量分数的增加而降低。FactSage计算表明,炉渣中TiO2活度增大,炉渣的黏度随之减小;TiO2增多有利于降低炉渣的熔化温度和扩大液相区,但当[w(TiO2)]由4.2%变化到5.6%时,炉渣的液相区反而在CaO区域缩小;炉渣结晶相的变化表明渣中TiO2不宜过多,否则在高温时就容易生成钙钛矿相,从而增大炉渣的黏度,不利于高炉顺行。为满足京唐高炉冶炼对炉渣性能的要求及护炉的需要,炉渣中[w(TiO2)]应控制在5.0%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号