首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用于MEMS封装的TSV工艺研究   总被引:1,自引:1,他引:0  
开展了应用于微机电系统(MEMS)封装的硅通孔(TSV)工艺研究,分析了典型TSV的工艺,使用Bosch工艺干法刻蚀形成通孔,气体SF6和气体C4F8的流量分别为450和190 cm3/min,一个刻蚀周期内的刻蚀和保护时长分别为8和3 s;热氧化形成绝缘层;溅射50 nm Ti黏附阻挡层和1μm Cu种子层;使用硫酸铜和甲基磺酸铜体系电镀液电镀填充通孔,比较了双面电镀和自下而上电镀工艺;最终获得了硅片厚度370μm、通孔直径60μm TSV加工工艺。测试结果证明:样品TSV无孔隙;其TSV电阻值小于0.01Ω;样品气密性良好。  相似文献   

2.
由于存在化学刻蚀的各向同性作用,不可避免地会在等离子体深硅刻蚀工艺中出现底部圆角,而过大的底部圆角给许多工艺应用带来不利影响。为了减小在等离子体深硅刻蚀中的底部圆角,对埋入式扇出型封装中的硅微腔刻蚀和2.5D封装中的硅通孔(TSV)刻蚀进行了研究。通过在BOSCH工艺中引入偏置电极功率递增和单步沉积时间递增的组合,硅微腔和TSV中的底部圆角高度分别从13.6μm和12μm减小到了6.6~10.0μm和8.4μm。该方法有望实际应用于微电子机械系统(MEMS)器件的制造和电子器件的先进封装等领域。  相似文献   

3.
为了满足异质集成应用中对转接板机械性能方面的需求,提出了一种基于双面硅通孔(TSV)互连技术的超厚硅转接板的制备工艺方案。该方案采用Bosch工艺在转接板正面形成300μm深的TSV,通过结合保型性电镀工艺和底部填充电镀工艺进行TSV填充。在转接板背面工艺中首先通过光刻将双面TSV的重叠部分控制在一个理想的范围内,然后经深反应离子刻蚀(DRIE)工艺形成深度为20μm的TSV并完成绝缘层开窗,最后使用保型性电镀完成TSV互连。通过解决TSV刻蚀中侧壁形貌粗糙、TSV底部金属层过薄和光刻胶显影不洁等关键问题,最终得到了双面互连电阻约为20Ω、厚度约为323μm的硅转接板。  相似文献   

4.
穿透硅通孔技术(TSV)是3D集成电路中芯片实现互连的一种新的技术解决方案,是半导体集成电路产业迈向3D封装时代的关键技术。在TSV制作主要工艺流程中,电镀铜填充是其中重要的一环。基于COMSOL Multiphysics平台,建立了考虑加速剂和抑制剂作用的硅通孔电镀铜仿真模型,仿真研究得到了基于硫酸铜工艺的最优电镀药水配方,并实验验证了该配方的准确性。  相似文献   

5.
提出了一种基于硅通孔(TSV)和激光刻蚀辅助互连的改进型CMOS图像传感器(CIS)圆片级封装方法.对CIS芯片电极背部引出的关键工艺,如锥形TSV形成、TSV绝缘隔离、重布线(RDL)等进行了研究.采用低温电感耦合等离子体增强型化学气相淀积(ICPECVD)的方法实现TSV内绝缘隔离;采用激光刻蚀开口和RDL方法实现CIS电极的背部引出;通过采用铝电极电镀镍层的方法解决了激光刻蚀工艺中聚合物溢出影响互连的问题,提高了互连可靠性.对锥形TSV刻蚀参数进行了优化.最终在4英寸(1英寸=2.54 cm)硅/玻璃键合圆片上实现了含有276个电极的CIS圆片级封装.电性能测试结果表明,CIS圆片级封装具有良好的互连导电性,两个相邻电极间平均电阻值约为7.6Ω.  相似文献   

6.
论述了TSV技术发展面临的设备问题,并重点介绍了深硅刻蚀、CVD/PVD沉积、电镀铜填充、晶圆减薄、晶圆键合等几种制约我国TSV技术发展的关键设备。  相似文献   

7.
硅通孔(TSV)结构是三维电路集成和器件封装的关键结构单元。TSV结构是由电镀铜填充的Cu-Si复合结构,该结构具有Cu/Ta/SiO2/Si多层界面,而且界面具有一定工艺粗糙度。TSV结构中,由于Cu和Si的热膨胀系数相差6倍,致使TSV器件热应力水平较高,引发严重的热机械可靠性问题。这些可靠性问题严重影响TSV技术的发展和应用,也制约了基于TSV技术封装产品的市场化进程。针对TSV结构的热机械可靠性问题,综述了国内外研究进展,提出了亟需解决的若干问题:电镀填充及退火工艺过程残余应力测量、TSV界面完整性的量化评价方法、热载荷和电流作用下TSV-Cu的胀出变形计算模型问题等。  相似文献   

8.
针对当前微机电系统(MEMS)发展对小型化封装的需求,设计了一种高可靠性、低成本、高深宽比的硅通孔(TSV)结构工艺流程。该工艺流程的核心是双面盲孔电镀,将TSV结构的金属填充分为正、反两次填充,最后获得了深度为155 μm、直径为41 μm的TSV结构。使用功率器件分析仪对TSV结构的电学性能进行了测试,使用X光检测机和扫描电子显微镜(SEM)分别观察了TSV结构内部的缺陷分布和填充情况。测试结果证明,TSV样品导电性能良好,电阻值约为1.79×10-3 Ω,孔内完全填充,没有空洞。该研究为实现MEMS的小型化封装提供了一种解决方法。  相似文献   

9.
提出了一种应用于3D封装的带有硅通孔(TSV)的超薄芯片的制作方法。具体方法为通过刻蚀对硅晶圆打孔和局部减薄,然后进行表面微加工,最后从硅晶圆上分离出超薄芯片。利用两种不同的工艺实现了TSV的制作和硅晶圆局部减薄,一种是利用深反应离子刻蚀(DRIE)依次打孔和背面减薄,另一种是先利用KOH溶液湿法腐蚀局部减薄,再利用DRIE刻蚀打孔。通过实验优化了KOH和异丙醇(IPA)的质量分数分别为40%和10%。这种方法的优点在于制作出的超薄芯片翘曲度相较于CMP减薄的小,而且两个表面都可以进行表面微加工,使集成度提高。利用这种方法已经在实验室制作出了厚50μm的带TSV的超薄芯片,表面粗糙度达到0.02μm,并无孔洞地电镀填满TSV,然后在两面都制作了凸点,在表面进行了光刻、溅射和剥离等表面微加工工艺。实验结果证实了该方法的可行性。  相似文献   

10.
为实现最有效的铜填充电镀工艺(electroplating process for copper via fill),需要金属籽晶(seed metal)的连续传导层通过TSV结构的深度。凭借大多数TSV设计(深宽比AR〈15:1),物理气相沉积(PVD)被确立为符合这一要求且风险最低的沉积技术,但对PVD的要求并不像许多人想象的那样简单。  相似文献   

11.
研究了孔径40μm的硅通孔铜电镀填充工艺,通过改善电镀工艺条件使得孔径40μm、孔深180μm的硅通孔得以填充满。首先,在种子层覆盖以及电镀液相同条件下通过改变电镀电流密度,研究不同电流密度对于铜填充的影响,确定优化电流密度为1ASD(ASD:平均电流密度)。之后,在相同电流密度下,详细分析了超声清洗、去离子水冲洗以及真空预处理等电镀前处理工艺对铜填充的影响。实验表明,采用真空预处理方法能够有效的将硅通孔内气泡排出获得良好的铜填充。最终铜填充率在电流密度为1ASD、真空预处理条件下接近100%。  相似文献   

12.
硅通孔刻蚀是TSV技术的重要工序步骤,采用标准博世(Bosch)工艺刻蚀硅通孔(宽为150μm),发现硅通孔侧壁出现多处刻蚀损伤。通过优化Bosch工艺参数增加沉积保护,消除了硅通孔侧壁刻蚀损伤问题,通孔开口差值,即通孔下开口宽度与通孔上开口宽度的差,从原来的22μm减小到13μm。利用优化后的工艺配方对硅通孔和硅腔(宽为1 500μm)同时进行刻蚀时,发现硅腔刻蚀后会产生硅针,不能应用到实际生产。经过多轮次Bosch工艺参数调整,把Bosch工艺沉积步骤的偏置功率设置为10 W,同时解决了硅通孔侧壁刻蚀损伤和硅腔刻蚀出现硅针问题,最终成功应用到MEMS环形器系列产品当中。  相似文献   

13.
研究了利用Cu/Sn对含硅通孔(TSV)结构的多层芯片堆叠键合技术。采用刻蚀和电镀等工艺,制备出含TSV结构的待键合芯片,采用扫描电子显微镜(SEM)对TSV形貌和填充效果进行了分析。研究了Cu/Sn低温键合机理,对其工艺进行了优化,得到键合温度280℃、键合时间30 s、退火温度260℃和退火时间10 min的最佳工艺条件。最后重点分析了多层堆叠Cu/Sn键合技术,采用能谱仪(EDS)分析确定键合层中Cu和Sn的原子数比例。研究了Cu层和Sn层厚度对堆叠键合过程的影响,获得了10层芯片堆叠键合样品。采用拉力测试仪和四探针法分别测试了键合样品的力学和电学性能,同时进行了高温测试和高温高湿测试,结果表明键合质量满足含TSV结构的三维封装要求。  相似文献   

14.
为了实现普通硅酸盐玻璃表面的金属化,利用波长为355nm的脉冲紫外激光刻蚀粗化活化,并结合化学镀,在其表面局域制备出了导电金属铜层。研究了激光加工参量对玻璃表面微观形貌、粗糙度、刻蚀深度的影响规律,并在玻璃表面成功引入了钯元素。结果表明,当第1次紫外激光扫描速率为200mm/s、脉冲频率为100kHz、能量密度为27J/cm2~37J/cm2和填充间距在10μm左右时,玻璃表面可以获得的刻蚀深度在25μm~35μm之间,刻蚀区域的粗糙度Ra在6μm~7μm之间,此时玻璃不会开裂;而第2次激光的能量密度在9J/cm2~11J/cm2之间时(其余参量不变),钯元素的引入实现了化学镀铜,此时铜层和玻璃之间的平均结合强度可以达到10MPa以上,铜层的体积电阻率可以达到10-6Ω·cm数量级。这是一种具有局域选择性、无需掩模、低成本、高结合强度和良好导电性的玻璃表面金属化工艺。  相似文献   

15.
张玲  梅军进  王伟征 《微电子学》2017,47(6):797-801, 805
相比于2D芯片,3D芯片具有更高的功率密度和更低的热导率。针对散热问题,多层3D芯片一般采用具有较高热导率的铜填充硅通孔(TSV)。为提高3D芯片的成品率,在温度条件限制下,对3D芯片进行TSV的容错结构设计非常重要。分析了带有TSV的3D芯片温度模型,提出了3D芯片温度模型的TSV修复方法。根据温度要求设计总的TSV数,将这些TSV分为若干个组,每组由m个信号TSV和n个冗余TSV组成,实现了组内和组间信号的TSV修复。实验结果表明,该TSV容错结构不仅有较高修复效率,而且具有较好散热效果。  相似文献   

16.
为了满足超大规模集成电路(VLSI)芯片高性能、多功能、小尺寸和低功耗的需求,采用了一种基于贯穿硅通孔(TSV)技术的3D堆叠式封装模型.先用深反应离子刻蚀法(DRIE)形成通孔,然后利用离子化金属电浆(IMP)溅镀法填充通孔,最后用Cu/Sn混合凸点互连芯片和基板,从而形成了3D堆叠式封装的制备工艺样本.对该样本的接触电阻进行了实验测试,结果表明,100 μm2Cu/Sn混合凸点接触电阻约为6.7 mΩ高90 μm的斜通孔电阻在20~30mΩ该模型在高达10 GHz的频率下具有良好的机械和电气性能.  相似文献   

17.
硅转接板是3D IC中实现高密度集成的关键模块,获取其技术参数对微系统的设计至关重要。以实际研制的一种2.5D硅转接板为研究对象,对大马士革铜布线(Cu-RDL)、硅通孔(TSV)关键电参数的测试结构与测试方法进行了研究,并对TSV电参数测试结构的寄生电容进行了分析。研究结果表明,研制的2.5D硅转接板中10 μm×80 μm TSV的单孔电阻为26 mΩ,1.7 μm厚度的Cu-RDL的方块电阻为9.4 mΩ/□,测试结果与理论计算值相吻合。本研究工作为2.5D/3D集成工艺的研发和建模提供了基础技术支撑。  相似文献   

18.
《电子与封装》2015,(8):1-8
以硅通孔(TSV)为核心的三维集成技术是半导体工业界近几年的研发热点,特别是2.5D TSV转接板技术的出现,为实现低成本小尺寸芯片系统封装替代高成本系统芯片(So C)提供了解决方案。转接板作为中介层,实现芯片和芯片、芯片与基板之间的三维互连,降低了系统芯片制作成本和功耗。在基于TSV转接板的三维封装结构中,新型封装结构及封装材料的引入,大尺寸、高功率芯片和小尺寸、细节距微凸点的应用,都为转接板的微组装工艺及其可靠性带来了巨大挑战。综述了TSV转接板微组装的研究现状,及在转接板翘曲、芯片与转接板的精确对准、微组装相关材料、工艺选择等方面面临的关键问题和研究进展。  相似文献   

19.
一种低成本的硅垂直互连技术   总被引:1,自引:0,他引:1  
封国强  蔡坚  王水弟  贾松良 《半导体技术》2006,31(10):766-769,781
采用KOH刻蚀工艺制作硅垂直互连用通孔,淀积SiO2作为硅垂直互连的电绝缘层,溅射Ti和Cu分别作为Cu互连线的黏附层/扩散阻挡层和电镀种子层.电镀10μm厚的Cu作为硅垂直互连的导电层.为实现金属布线的图形化,在已有垂直互连的硅片上试验了干膜光刻工艺.采用化学镀工艺,在Cu互连线上沉积150~200 nm厚的NiMoP薄膜作为防止Cu腐蚀和Cu向其上层介质扩散的覆盖层.高温退火验证了Ti阻挡层和NiMoP覆盖层的可靠性.  相似文献   

20.
<正>为先进半导体制造厂商提供湿法设备的盛美半导体设备(ACM Research)在SEMICON China2019期间举办新产品发布会,会上推出了三款差异化新产品:多阳极局部电镀铜设备,先进封装抛铜设备,以及Tahoe高温硫酸清洗设备,3款设备将助力芯片厂商大幅度提升盈利能力。多阳极局部电镀铜设备多阳极局部电镀铜设备主要应用于40 nm和28 nm及以下工艺节点的铜金属层沉积,采用多阳极局部电镀工艺,可实现电镀初始阶段就做到均匀电镀,实现完全的无气穴填充,帮助客户提升  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号