首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
测量了自组织多层In0.55Al0.45As/Al0.5Ga0.5As量子点的变温光致发光谱,同时观察到来自浸润层和量子点的发光,首次直接观察到了浸润层和量子点之间的载流子热转移。分析发光强度随温度的变化发现浸润层发光的热淬灭包括两个过程:低温时浸润层的激子从局域态热激发到扩展态,然后被量子点俘获;而温度较高时则通过势垒层的X能谷淬灭.利用速率方程模拟了激子在浸润层和量子点间的转移过程,计算结果与  相似文献   

2.
提出了利用分子束外延方法生长In0.5Ga0.5As/In0.5Al0.5As应变耦合量子点,并分析量子点的形貌和光学性质随GaAs隔离层厚度变化的特点.实验结果表明,随着耦合量子点中的GaAs隔离层厚度从2 nm增加到10 nm,In0.5Ga0.5As量子点的密度增大、均匀性提高,Al原子扩散和浸润层对量子点PL谱的影响被消除,而且InAlAs材料的宽禁带特征使其成为InGaAs量子点红外探测器中的暗电流阻挡层.由此可见,选择合适的GaAs隔离层厚度形成InGaAs/InAlAs应变耦合量子点将有益于InGaAs量子点红外探测器的研究.  相似文献   

3.
在15K测量了不同尺寸分布的In0.55A10.45As/Al0.5Ga05As量子点的静压光致发光,静压范围为0-1.3GPa.常压下观察到三个发光峰,分别来源于不同尺寸的量子点(横向直径分别为26、52和62am)的发光.它们的压力系数分别为82、94和98meV/Gpa,都小于In0.55Al0.45As体材料带边的压力系数,特别是尺寸为26nm的小量子点比In0.55Al0.45As体材料带边小17%,并且压力系数随量子点尺寸的变小而减小.理论计算表明有效质量的增大和Γ-X混合是量子点压力系数变小的主要原因,并得到横向直径为26和52nm的小量子点的Γ-X混合势为15和10meV.根据实验还确定In0.55Al0.45As/Al0.5Ga0.5As量子点系统X能带具有Ⅱ类结构,并且估算出价带不连续量为0.15±0.02.  相似文献   

4.
在 1 5K测量了不同尺寸分布的 In0 .55Al0 .4 5As/Al0 .5Ga0 .5As量子点的静压光致发光 ,静压范围为 0 - 1 .3GPa.常压下观察到三个发光峰 ,分别来源于不同尺寸的量子点 (横向直径分别为2 6、52和 62 nm)的发光 .它们的压力系数分别为 82、94和 98me V/GPa,都小于 In0 .55Al0 .4 5As体材料带边的压力系数 ,特别是尺寸为 2 6nm的小量子点比 In0 .55Al0 .4 5As体材料带边小 1 7% ,并且压力系数随量子点尺寸的变小而减小 .理论计算表明有效质量的增大和 Γ- X混合是量子点压力系数变小的主要原因 ,并得到横向直径为 2 6和 52 nm的小量子点的 Γ- X混合势为  相似文献   

5.
提出了利用分子束外延方法生长In0.5Ga0.5As/In0.5Al0.5As应变耦合量子点,并分析量子点的形貌和光学性质随GaAs隔离层厚度变化的特点。实验结果表明,随着耦合量子点中的GaAs隔离层厚度从2 nm增加到10 nm,In0.5Ga0.5As量子点的密度增大、均匀性提高, Al原子扩散和浸润层对量子点PL谱的影响被消除,而且InAlAs材料的宽禁带特征使其成为InGaAs量子点红外探测器中的暗电流阻挡层。由此可见,选择合适的GaAs隔离层厚度形成InGaAs/InAlAs应变耦合量子点将有益于InGaAs量子点红外探测器的研究。  相似文献   

6.
当激发光能量小于GaAs势垒带边能量时,在InAs量子点结构中,清楚地观察到与InAs浸润层有关的发光峰.研究表明,此发光峰主要来源于浸润层中局域态激子发光,局域化能量为12meV,发光具有二维特性.在相同的生长条件下,此发光峰位置与InAs层的厚度基本无关.这些结果有助于进一步深入研究浸润层的形貌和光学性质.  相似文献   

7.
利用分子束外延技术在(100)和(113)B GaAs衬底上进行了有/无AlAs盖帽层量子点的生长,测量了其在4~100 K温度区间的PL光谱。通过对PL光谱的积分强度、峰值能量和半高宽进行分析进而研究载流子的热传输特性。无AlAs盖帽层的(113)B面量子点的PL光谱的热淬灭现象可以由载流子极易从量子点向浸润层逃逸来解释。然而,有AlAs盖帽层的(113)B量子点的PL热淬灭主要是由于载流子进入了量子点与势垒或者浸润层界面中的非辐射中心引起的。并且其PL的温度依存性与利用Varshni定律计算的体材料InAs的温度依存性吻合很好,表明载流子通过浸润层进行传输受到了抑制,由于AlAs引起的相分离机制(113)B量子点的浸润层已经消失或者减小了。(100)面有AlAs盖帽层的PL半高宽的温度依存性与无AlAs盖帽层的量子点大致相同,表明在相同外延条件下相分离机制在(100)面上不如(113)B面显著。  相似文献   

8.
我们对用GSMBE技术生长的In0.63Ga0.37AS/lnP压应变单量子阱样品进行了变温光致发光研究,In0.63Ga0.37As阱宽为1nm到11nm,温度变化范围为10K到300K.发现不同阱宽的压应变量子阱中激子跃迁能量随温度的变化关系与体In0.53Ga0.47As材料相似,温度系数与阱宽无关.对1nm的阱,我们观察到其光致发光谱峰为双峰,经分析表明,双峰结构由量子阱界面起伏一个分子单层所致.说明量子阱界面极为平整,样品具有较高的质量.考虑到组分效应、量子尺寸效应及应变效应,计算了In0.63G0.37As/InP压应变量子阱中的激子跃迁能量,理论计算结果与实验结果符合得很好  相似文献   

9.
采用低温成核生长与一步法相结合的方式合成了CdSe/ZnSe核壳结构量子点,并通过吸收光谱、荧光光谱、X射线衍射等分析手段证明了ZnSe壳层包覆成功.对加入空穴传输材料后CdSe/ZnSe量子点的荧光变化情况进行了深入的研究.稳态光谱结果表明.空穴传输材料对量子点发光有较强的淬灭作用;时间分辨光谱结果显示,随着空穴传输材料分子浓度的增加,量子点的荧光寿命明显缩短,其荧光淬灭过程可以解释为静态淬灭和动态淬灭过程.静态淬灭来源于量子点表面与空穴传输材料间的相互作用;而动态淬灭则来源于量子点到空穴传输材料的空穴转移过程.因此,量子点的壳层结构及空穴传输材料的种类对量子点的荧光淬灭起关键作用.  相似文献   

10.
测量了生长在(311)A面GaAs衬底上的In0.55Al0.45As/Al0.5Ga0.5As自组织量子点光致发光谱,变激发功率和压力实验证明发光峰是与X能谷相关的Ⅱ型发光峰,将它指认为从Al0.5Ga0.5As势垒X能谷到In0.55Al0.45As重空穴的Ⅱ型跃迁,高温下观察到的高能峰随压力增大向高能方向移动,认为它来源于量子点中Г能谷与价带之间的跃迁,在压力下还观察了一个新的与X相关的发光峰,认为它与双轴应变引起的导带X能谷劈裂有关。  相似文献   

11.
系统地研究了快速热退火对带有 3nm Inx Ga1 - x As(x=0 ,0 .1,0 .2 )盖层的 3nm高的 In As/ Ga As量子点发光特性的影响 .随着退火温度从 6 5 0℃上升到 85 0℃ ,量子点发光峰位的蓝移趋势是相似的 .但是 ,量子点发光峰的半高宽随退火温度的变化趋势明显依赖于 In Ga As盖层的组分 .实验结果表明 In- Ga在界面的横向扩散在量子点退火过程中起了重要的作用 .另外 ,我们在较高的退火温度下观测到了 In Ga As的发光峰  相似文献   

12.
采用MOCVD方法制备了ZnCdSe量子阱/CdSe量子点耦合结构,利用低温(5K)光致发光光谱和变密度发光光谱研究了该结构中的激子隧穿和复合. 观察到在该结构中存在由量子阱到量子点的激子隧穿现象. 改变垒层厚度会对量子阱和量子点的发光产生显著影响. 在垒层较薄的阱/点耦合结构中,隧穿效应可以有效地抑制量子阱中的带填充和饱和效应.  相似文献   

13.
采用MOCVD方法制备了ZnCdSe量子阱/CdSe量子点耦合结构,利用低温(5K)光致发光光谱和变密度发光光谱研究了该结构中的激子隧穿和复合.观察到在该结构中存在由量子阱到量子点的激子隧穿现象.改变垒层厚度会对量子阱和量子点的发光产生显著影响.在垒层较薄的阱/点耦合结构中,隧穿效应可以有效地抑制量子阱中的带填充和饱和效应.  相似文献   

14.
在77K下测量了不同阱宽(30-160A)的In_xCa_(1-x)As/GaAs应变量子阱的静压下光致发光谱.静压范围为0-60kbar.发现导带第一子带到重空穴第一子带的激子发光峰的压力系数从 160A阱的 9.74meV/kbat增加到 30A 阱的 10.12meV/kbar.计算表明,阱变窄时电子波函数向压力系数较大的势垒层中的逐步扩展是压力系数随阱宽变小而增加的原因之一.在压力超过50kbar后观察到两个与间接跃迁有关的发光峰.  相似文献   

15.
利用应力释放模型计算了 Zn Cd Se/Ga As间的临界厚度 ,并以该临界厚度为基础 ,用 MOVCD设备在Stranski-Krastanow (S-K)生长模式下 ,外延生长了 Zn Cd Se量子点。用原子力显微镜和光谱测量的方法研究了量子点的演化过程。随着时间的推移 ,量子点发生了两种变化 ,即 Ostwald熟化过程和量子点的生成过程。另外 ,量子点由尖塔状逐渐演化为圆顶状。这种形状的变化可以用晶体生长模型进行解释。通过分析量子点样品的发光光谱 ,发现了两种发光机制 ,一种是零维量子点激子的发光 ,另一种是二维激子的发光。随着量子点生长完毕与加盖层之间间隔时间的增加 ,零维激子对二维激子发光的比值增加 ,且发光峰位明显红移。这从另一方面验证了由原子力显微镜直接观测到的量子点的演化过程  相似文献   

16.
垂直堆跺InAs量子点是用分子束外延(MBE),通过Stranski-Krastanov(S-K)方式生长.利用光致发光(PL)实验对InAs量子点进行了表征.在生长过程中使用对形状尺寸控制的方式来提高垂直堆垛InAs量子点形貌均匀性.样品的外延结构是Si掺杂GaAs衬底生长500nm的过渡层,500nm的GaAs外延层,15nm的Al0.5Ga0.5As势垒外延层,5个周期的InAs量子点生长后2单层GaAs的外延结构,50 nh的Al0.5Ga0.5As势垒外延层,最后是15 m的GaAs覆盖层.外延结构中Al0.5Ga0.5As势垒外延层对镶嵌在里面的InAs量子点有很强的量子限制作用产生量子效应.PL测量系统使用514.5 nn的缸离子激发源.发现了量子点基态光致发光峰等距离向红外方向劈裂等新的物理现象.利用光致发光通过改变势垒的宽度和掺杂情况,研究了外延结构的光致发光特性,得到二维电子气(2DEG)随势能变化局域化加强等的新结果.  相似文献   

17.
耦合GaN/AlxGa1-xN量子点中的激子特性   总被引:4,自引:4,他引:0  
在有效质量近似下,运用变分方法,考虑到量子点内电子和空穴的三维束缚以及由压电极化和自发极化所引起的内建电场,对圆柱型耦合GaN量子点的光学性质及激子态做了研究。给出了激子结合能Eb、量子点发光波长λ、电子-空穴复合率和量子点高度L^GaN以及势垒层厚度L^AlGaN之间的函数关系。结果表明,量子点高度LG^GaN、势垒层厚度L^AlGaN的增加将导致激子结合能、电子-空穴复合率的降低,耦合量子点发光波长的增加。  相似文献   

18.
在有效质量近似基础上,考虑强的内建电场效应,变分计算了纤锌矿结构的GaN柱形量子点中带电量为 的离子受主束缚激子(A?, X)的发光波长。结果表明,离子受主束缚激子发光波长强烈依赖于量子点的尺寸(高度和半径)、离子受主杂质的位置和垒中Al含量。随着量子点高度、半径及垒中Al含量的增加,离子受主束缚激子发光波长增大。随着离子受主杂质从量子点左边垒中沿z轴方向移至量子点左边界时,发光波长先增大,在量子点的左界面附近达到极大值;随着离子受主杂质在量子点内继续右移,发光波长减小,当杂质位于量子点的右边界附近时光跃迁波长达到极小值;进一步右移离子受主杂质至量子点的右边垒中时,发光波长增大。和自由激子光跃迁波长相比,当离子受主杂质位于量子点中心的左边时,杂质的引入使发光波长增大,当离子受主杂质位于量子点中心的右边时,杂质的引入使发光波长减小。  相似文献   

19.
在77K,0—60kbar范围内对在同一衬底上生长的In_(0.15)Ga_(0.85)As/GaAs和GaAs/Al_(0.3)Ga_(0.7)As量子阱的静压下的光致发光进行了对照研究。在GaAs/Al_(0.3)Ga_(0.7)As量子阱中同时观察到导带到轻重空穴子带的跃迁。而在In_(0.15)Ga_(0.85)As/GaAs阱中只观察到导带到重空穴子带的跃迁。与GaAs/Al_(0.3)Ga_(0.7)As的情况相反,In_(0.15)Ga_(0.85)As/GaAs 量子阱的光致发光峰的压力系数随阱宽的减小而增加。在压力大于48kbar时观察到多个与间接跃迁有关的发光峰,对此进行了简短的讨论。  相似文献   

20.
利用MOCVD技术在c面蓝宝石衬底上采用AlN缓冲层制备了Mg掺杂Al0.5Ga0.5N薄膜。采用CL测试方法研究了Mg掺杂对Al0.5Ga0.5N薄膜光学特性的影响。测量表明,Mg掺杂导致在Al0.5Ga0.5N薄膜的发光谱中出现了3.9eV的发光带,其发光机理为束缚的施主-受主对(DAP)间的辐射复合跃迁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号