首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
杨波  杨潇楠  陈磊  陈瑞博  李浩亮 《微电子学》2019,49(6):838-841, 846
传统LVTSCR的维持电压过低,器件容易受到闩锁效应的影响而无法正常关断。为了提高传统LVTSCR的维持电压,基于0.18 μm BCD工艺,提出一种内嵌P型浅阱的新型LVTSCR (EP-LVTSCR)。采用Sentaurus TCAD,对提出的器件进行建模和测试。结果表明,该EP-LVTSCR的维持电压从传统LVTSCR的1.52 V提升到3.85 V,具有免疫闩锁效应的能力,可应用于3.3 V电源的ESD防护。  相似文献   

2.
对于工作电压为5 V的集成电路,低压触发可控硅(LVTSCR)的触发电压已能满足ESD保护要求,但其较低的维持电压会导致严重的闩锁效应。为解决闩锁问题,对传统LVTSCR进行了改进,通过在N阱下方增加一个N型重掺杂埋层,使器件触发后的电流流通路径发生改变,降低了衬底内积累的空穴数量,从而抑制了LVTSCR的电导调制效应,增加了维持电压。Sentaurus TCAD仿真结果表明,在不增加额外面积的条件下,改进的LVTSCR将维持电压从2.44 V提高到5.57 V,能够避免5 V工作电压集成电路闩锁效应的发生。  相似文献   

3.
为了在5 V片上输入输出端进行静电放电(ESD)防护,提出了一种新型的LVTSCR结构。使用Silvaco 2D TCAD软件对此器件进行包含电学及热学特性的仿真。此新型器件交换了LVTSCR中N-Well的N+、P+掺杂区并引入了一个类PMOS结构用来在LVTSCR工作前释放ESD电流。器件仿真结果显示,与LVTSCR相比,该器件获得了更高的维持电压(10.51 V),以及更高的开启速度(1.05×10-10 s),同时触发电压仅仅从12.45 V增加到15.35 V。并且,如果加入的PMOS结构选择与NMOS相同的沟道长度,器件不会引起热失效问题。  相似文献   

4.
针对高压BCD工艺使用SCR器件ESD保护时面临的高触发电压与低维持电压之间的矛盾,设计了一种多嵌入阱可控硅(MEWSCR)结构。相比于常规SCR结构,首先,通过移动阳极/阴极的N+/P+掺杂区引入辅助泄放器件,MEWSCR结构实现了二次触发,增加了维持电压;其次,通过在阳极P+区和阴极N+区下方分别嵌入N浅阱和P浅阱,增强非平衡载流子的SRH复合作用,降低SCR的再生反馈效应,提高了维持电流。基于0.18 μm BCD工艺,采用TCAD软件进行模拟。结果表明,新型MEWSCR器件的维持电压提升至23 V,维持电流提升1 A以上,满足ESD设计窗口要求。  相似文献   

5.
LVTSCR器件结构相对于普通SCR具有低电压触发特性而被广泛用于集成电路的片上静电放电(ESD)防护中。但是在ESD事件来临时,其维持电压过低易发生闩锁(latch-up)效应致使器件无法正常关断。为改进LVTSCR这一缺陷,提出了一种内嵌PMOS的高维持电压LVTSCR结构,即Embedded PMOS LVTSCR(EP-LVTSCR)。该结构基于内嵌PMOS组成的分流通路抽取阱内载流子,抑制寄生晶体管PNP与NPN正反馈效应,来提高器件抗闩锁能力;通过Sentaurus TCAD仿真软件模拟0.18μm CMOS工艺,验证器件的电流电压(I-V)特性。实验结果表明,与传统LVTSCR相比较,EP-LVTSCR的维持电压从2.01 V提升至4.50 V,触发电压从8.54 V降低到7.87 V。该器件具有良好的电压钳位特性,适用于3.3 V电源电路芯片上静电防护应用。  相似文献   

6.
针对双向可控硅(DDSCR)易发生闩锁效应的问题,提出了一种多路高维持电压DDSCR(MHVDDSCR)。在器件的两边嵌入NMOS管,构成电流通路,抽取阱内的空穴与电子,促使反偏PN结内电场增强,提高了维持电压。采用Sentaurus TCAD进行了仿真验证。结果表明,相比于传统LT_DDSCR,MHVDDSCR的触发电压降低了0.61 V,维持电压从2.10 V提高到7.13 V。该器件适用于狭窄ESD设计窗口的模拟IC的双向静电防护。  相似文献   

7.
孙浩楠  李浩亮  杨潇楠 《微电子学》2022,52(6):1044-1049
传统DDSCR器件过低的维持电压容易造成闩锁效应。提出了一种新型DDSCR,在传统器件阳极与阴极之间加入了浮空高掺杂的N+与P+有源区,通过P+有源区复合阱内的电子,N+有源区将电流通过器件深处电阻较低SCR路径泄放的方式来解决传统器件维持电压过低的问题,提高器件抗闩锁能力。基于TCAD的仿真结果表明,与传统DDSCR相比,新型器件的维持电压从2.9 V提高到10.5 V,通过拉长关键尺寸D7,可将器件维持电压进一步提高到13.7 V。该器件适用于I/O端口存在正负两种电压的芯片防护。  相似文献   

8.
NMOS管I-V曲线在ESD(electrostatic discharges)脉冲电流作用下呈现出反转特性,其维持电压VH、维持电流IH、触发电压VB、触发电流IB以及二次击穿电流等参数将会影响NMOS管器件的抗ESD能力。文章通过采用SILVACO软件,对1.0μm工艺不同沟长和工艺条件的NMOS管静电放电时的峰值电场、晶格温度以及VH进行了模拟和分析。模拟发现,在ESD触发时,增加ESD注入工艺将使结峰值场强增强,VH减小、VB减小,晶格温度降低;器件沟长和触发电压VB具有明显正相关特性,但对VH基本无影响。最后分析认为NMOS管ESD失效主要表现为高电流引起的热失效,而电场击穿引起的介质失效是次要的。  相似文献   

9.
低压触发可控硅结构在静电保护电路中的应用   总被引:1,自引:1,他引:0  
曾莹  李瑞伟 《微电子学》2002,32(6):449-452
对LVTSCR(Low Voltage Triggered Silicon Controlled Rectifier)结构在深亚微米集成电路中的抗静电特性进行了研究.实验结果表明,LVTSCR结构的参数,如NMOS管沟道长度、P-N扩散区间距和栅极连接方式等,都对LVTSCR结构的静电保护性能有影响.利用优化的LVTSCR结构,获得了6000V以上的ESD失效电压.  相似文献   

10.
传统低压触发可控硅(LVTSCR)维持电压过低,应用于片上ESD防护时存在闩锁风险。文章提出了一种嵌入分流路径的LVTSCR。基于0.18 μm CMOS工艺,使用Sentaurus-TCAD软件模拟人体模型,对器件准静态特性进行了分析。结果表明,新型器件在保持触发电压、ESD防护性良好的情况下,有效提高了维持电压。对关键尺寸D6进行优化,该器件的维持电压提高到5.5 V以上,器件可安全应用于5 V电压电路,避免了闩锁效应。  相似文献   

11.
将高压MOSFETs器件集成到低压CMOS数字和模拟电路中的应用越来越频繁。文章参考了Parpia提出结构,将高压NMOS、PMOS器件制作在商用3.3V/5V 0.5μmN-阱CMOS工艺中,没有增加任何工艺步骤,也没有较复杂BiCMOS工艺中用到的P-阱、P+、N+埋层,使用了PT注入。通过对设计结构的PCM测试,可以得到高压大电流的NMOS管BVdssn>23V~25V,P管击穿BVdssp>19V。同时,文章也提供了高压器件的设计思路和结果描述。  相似文献   

12.
彭伟  谢海情  邓欢 《电子器件》2007,30(3):863-865
在分析MOS管电流电压的温度特性的基础上,基于对两个连接成二极管形式的对称NMOS管通以不同大小的PTAT电流,NMOS管的栅压将向不同方向变化这一原理,通过对这两个NMOS管的栅压进行相互补偿,设计了一种新型的CMOS基准电压源.电路采用TSMC 0.18 μm CMOS工艺进行设计,基于BSIM3V3模型,利用Cadence的Spectre工具对电路进行仿真.结果表明:当电源电压VDD=1.2 V时,其温度系数仅为28×10-6/℃.  相似文献   

13.
与衬底隔离的漏极扩展式NMOS器件被广泛应用于功率信号处理中。器件由于强电场引起的空穴电流会导致寄生NPN管导通,引起二次击穿,产生严重的可靠性问题。通过优化P型外延条件,埋层及N阱的杂质浓度分布,使得峰值电场降低百分之三十,空穴峰值电流降低百分之六十,大大抑制了寄生NPN效应。当Vgs=6V时,器件的I-V输出特性显示其开态击穿电压从28V提高到了37V,TLP测试结果显示能量耐受能力提高了百分之三十,同时器件的导通电阻等参数保持不变。  相似文献   

14.
低电压触发的可控硅器件LVTSCR具有低触发特性,被广泛应用于静电放电(ESD)防护领域。为了避免LVTSCR在工作时发生闩锁效应和潜在失效,基于0.18 μm BCD工艺,提出一种双MOS触发的DMTSCR。TCAD仿真结果显示,相比传统LVTSCR,DMTSCR具有更低的触发电压和更高的维持电压,显著提高了器件的闩锁免疫力,同时消除了传统LVTSCR的潜在失效风险。该器件适用于5 V电源的ESD防护。  相似文献   

15.
提出了一种用于静电放电(ESD)保护的PMOS器件触发SCR器件(PMTSCR)。PMTSCR器件的开启由寄生PMOS的沟道长度、SCR器件寄生阱电阻RPW和RNW决定。器件具有触发电压低的优点。实验结果表明,通过调整PMTSCR器件的结构参数,相比于传统低电压触发SCR器件(LVTSCR),PMTSCR器件的触发电压由6.3 V下降到4.4 V,触发电压减少30%,同时器件的ESD漏电流保持不变。  相似文献   

16.
利用NMOS管在亚阈值区、线性区和饱和区不同的导电特性,产生正温度系数电流;多晶硅高阻与N阱电阻组成串联电阻,代替线性区的NMOS管,产生与正温度系数电流互补的负温度系数电流。采用自偏置共源共栅电流镜结构,提出一种无运算放大器和三极管的求和型CMOS基准电流源。基于Nuvoton 0.35 μm CMOS工艺,完成设计与仿真。结果表明,在-40 ℃~100 ℃的温度范围内,电流变化为2.4 nA,温度系数为7.49×10-6/℃;在3.0~5.5 V的电压范围内,电源电压线性调整率为3.096 nA/V;在5 V工作电压下,输出基准电流为2.301 μA,电路功耗为0.08 mW,低频时电源电压抑制比为-57.47 dB。  相似文献   

17.
通过在常规双向可控硅器件(DDSCR)内部嵌入一个PNP结构,提出了一种新型的静电防护(ESD)器件DDSCR-PNP,以提高器件的维持电压(Vh),降低闩锁风险。首先,分析了DDSCR-PNP器件的工作机理,理论分析表明,内嵌PNP结构(PNP_2)使器件具有很好的电压箝位能力。然后,基于0.35 μm Bipolar-CMOS-DMOS工艺制造了实验器件,并利用Barth 4002传输线脉冲测试系统进行了分析。测试结果证明了DDSCR-PNP的Vh比传统DDSCR高得多,而且通过调节P阱宽度可进一步增加Vh。然而,当P阱宽度超过12 μm时,DDSCR-PNP的漏电流(IL)出现明显波动。最后,利用Sentaurus仿真分析了影响Vh和IL的原因。结果表明,横向PNP_2有助于提高Vh并降低IL,但其作用随着P阱宽度的增大而减弱,导致IL随之增大。这种新型的DDSCR-PNP器件为高压集成电路的ESD防护提供了一种有效的解决方案。  相似文献   

18.
陈瑞博  李浩亮  刘志伟  陈磊  邹望辉  许海龙 《微电子学》2019,49(2):288-291, 298
针对5 V电源的静电放电(ESD)防护,提出一种利用PMOS管分流的新型优化横向可控硅(PMOS-MLSCR)。相比于传统MLSCR,PMOS-MLSCR具有更高的维持电压和相对较低的触发电压,有效避免了传统MLSCR面临的闩锁风险。基于0.18 μm BCD工艺,采用TCAD仿真模拟PMOS-MLSCR和传统MLSCR,并通过模拟TLP测试器件特性。仿真结果表明,PMOS-MLSCR的维持电压相对于传统MLSCR提升了3.64 V,触发电压降低了1.49 V,并且满足5 V电源ESD防护的设计窗口。  相似文献   

19.
设计出一种能与体硅标准低压 CMOS工艺完全兼容的新型凹源 HV-NMOS( High voltage NMOS)结构 ,在 TSUPREM-4工艺模拟的基础上提出了该结构具体的工艺流程及最佳的工艺参数 ,通过 MEDICI进行特性模拟得到了该结构的电流 -电压和击穿等特性曲线 ,击穿电压比传统 HV-NMOS提高了 3 7.5 %。同时分析了凹源结构、p阱、缓冲层 ( Buffer层 )及场极板对改善 HV-NMOS工作特性的有效作用 ,最后给出了该凹源 HV-NMOS的流水实验测试结果。  相似文献   

20.
根据白光LED(Light Emitting Diode)的特性及其对驱动电路的要求,提出了一种高可靠、高效率的LED高压驱动芯片,具有线性调光和数字调光两种调光功能。芯片采用简化的脉冲宽度调制(PWM,Pulse Width Modulation)峰值电流控制模式控制通过LED的电流,系统稳定性好,抗干扰能力强。振荡器中新型抖频电路模块的加入,提高了系统的电磁干扰(EMI,Electro Magnetic Interference)性能,使系统可靠性进一步增强。驱动芯片的输入电压范围为8.5 V~40V,输出的驱动电压达7.5V,可有效降低NMOS功率开关管的导通损耗。电路设计采用低静态电流、低反馈电压等低功耗设计技术,提高了系统的电能转换效率。芯片采用CSMC公司1μm 40V高压CMOS工艺模型设计,并完成流片。测试结果验证了抖频电路的作用,系统的最高转换效率达到了95.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号