首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The transparent conductive Mg-Ga co-doped ZnO (MGZO) films were prepared by radio-frequency (RF) magnetron sputtering. The influence of substrate temperature on the structural and optoelectrical properties of the films is studied. The results show that all the films possess a preferential orientation along the (002) plane. With the increase of substrate temperature, the structure and optoelectrical properties of the films can be changed. When substrate temperature is 300 °C, the deposited film exhibits the best crystalline quality and optoelectrical properties, with the minimum micro strain of 1.09´10-3, the highest average visible transmittance of 82.42%, the lowest resistivity of 1.62×10-3 W?cm and the highest figure of merit of 3.18×103 W-1?cm-1. The optical bandgaps of the films are observed to be in the range of 3.342—3.545 eV. The refractive index dispersion curves obey the Sellmeier’s dispersion model. #$TABThis work has been supported by the National Natural Science Foundation of China (No.11504436), and the Fundamental Research Funds for the Central Universities (Nos.CZP17002 and CZW14019).#$TABE-mail:zyzhongzy@163.com   相似文献   

2.
CuCr0.93Mg0.07O2 thin films were successfully deposited by DC reactive magnetron sputtering at 1123 K from metallic targets. The influence of film thickness on the structural and optoelectronic properties of the films was investigated. X-ray diffraction (XRD) results revealed that all the films had a delafossite structure with no other phases. The optical and electrical properties were investigated by UV–VIS spectrophotometer and Hall measurement, respectively. It was found that the optoelectronic properties exhibited a thickness-dependent behavior. The optical band gap and the average transmittance of the films showed a monotonous decrease with respect to the increase in thickness. The average transmittance in the visible region decreased from 67% to 47% as the thickness increased from ~70 nm to ~280 nm. Simultaneously, the conductivity of the films fell from 1.40 S∙cm−1 to 0.27 S∙cm−1. According to Haacke's figure of merit (FOM), a film with a maximum FOM value of about 1.72×10−7 Ω−1 can be achieved when the thickness is about 70 nm (σ≈ 1.40 S·cm−1 and Tav. ≈67%).  相似文献   

3.
Al and F co-doped ZnO(ZnO:(Al,F)) thin films on glass substrates are prepared by the RF magnetron sputtering with different F doping contents.The structural,electrical and optical properties of the deposited films are sensitive to the F doping content.The X-ray analysis shows that the films are c-axis orientated along the(002) plane with the grain size ranging from 9 nm to 13 nm.Micrographs obtained by the scanning electron microscope(SEM) show a uniform surface.The best films obtained have a resistivity of 2.16×10-3Ω·cm,while the high optical transmission is 92.0% at the F content of 2.46 wt.%.  相似文献   

4.
Niobium-doped indium tin oxide (ITO:Nb) thin films are prepared on glass substrates with various film thicknesses by radio frequency (RF) magnetron sputtering from one piece of ceramic target material. The effects of thickness (60-360 nm) on the structural, electrical and optical properties of ITO: Nb films are investigated by means of X-ray diffraction (XRD), ultraviolet (UV)-visible spectroscopy, and electrical measurements. XRD patterns show the highly oriented (400) direction. The lowest resistivity of the films without any heat treatment is 3.1×10-4 Ω·cm-1, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 17.6 N·S and 1.36×1021 cm-3, respectively. Band gap energy of the films depends on substrate temperature, which varies from 3.48 eV to 3.62 eV.  相似文献   

5.
Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature (T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm?3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10?4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.  相似文献   

6.
Transparent conducting oxide of fluorine-doped tin oxide (FTO) thin films was deposited from chemical solutions of tin chloride and ammonium fluoride using streaming process for electroless and electrochemical deposition (SPEED) at substrate temperature 450, 500, and 530 ℃ respectively. The effect of substrate temperatures on the microstructural properties such as crystallite size, dislocation density, micro strain, volume of the unit cell, volume of the nanoparticles, number of the unit cell, bond length and the lattice constants were examined using XRD technique. Only reflections from (110) and (200) planes of tetragonal SnO2 crystal structure were obvious. The peaks are relatively weak indicating that the deposited materials constitute grains in the nano dimension. Hall measurements, which were done using van der Pauw technique, showed that the FTO films are n-type semiconductors. The most favorable electrical values were achieved for the film grown at 530 ℃ with low resistivity of 7.64×10-4Ω·cm and Hall mobility of -9.92 cm2/(V·s).  相似文献   

7.
Cupric oxide thin films were deposited on silicon and sapphire substrates by reactive radio frequency magnetron sputtering at different substrate temperatures. The results showed that the CuO films were composed of different sizes of CuO nano-grains and the CuO films deposited on Si substrates showed a more dense and uniform surface than that deposited on Al2O3 substrates. It was noted that both the CuO films deposited on Si and Al2O3 substrates revealed only CuO related diffractions and the preferred orientation of the CuO films changed from (002) to (111) as the substrate temperature increased. Moreover, the carrier concentration was 1.141?×?1018 cm?3 and the mobility was 0.401 cm2/v s at 450°C substrate temperature. The controllable electrical properties of the films can be achieved by the variation of crystal quality arising from the substrate temperature.  相似文献   

8.
掺杂浓度对AZO薄膜结构和性能的影响   总被引:1,自引:1,他引:0  
采用溶胶–凝胶工艺在玻璃基片上制备出Al3+掺杂型的ZnO(AZO)透明导电薄膜,对薄膜进行了XRD和SEM分析,并对其光电性能作了详细的研究。结果表明薄膜为纤锌矿型结构,呈c轴方向择优生长;薄膜的可见光透过率可达80%以上;Al3+掺杂型的ZnO透明导电薄膜的电阻率为1.5×10–2~8.2×10–2?·cm。  相似文献   

9.
High-quality, single-crystal epitaxial films of CdTe(112)B and HgCdTe(112)B have been grown directly on Si(112) substrates without the need for GaAs interfacial layers. The CdTe and HgCdTe films have been characterized with optical microscopy, x-ray diffraction, wet chemical defect etching, and secondary ion mass spectrometry. HgCdTe/Si infrared detectors have also been fabricated and tested. The CdTe(112)B films are highly specular, twin-free, and have x-ray rocking curves as narrow as 72 arc-sec and near-surface etch pit density (EPD) of 2 × 106 cm−2 for 8 μm thick films. HgCdTe(112)B films deposited on Si substrates have x-ray rocking curve FWHM as low as 76 arc-sec and EPD of 3-22 × 106 cm−2. These MBE-grown epitaxial structures have been used to fabricate the first high-performance HgCdTe IR detectors grown directly on Si without use of an intermediate GaAs buffer layer. HgCdTe/Si infrared detectors have been fabricated with 40% quantum efficiency and R0A = 1.64 × 104 Ωm2 (0 FOV) for devices with 7.8 μm cutoff wavelength at 78Kto demonstrate the capability of MBE for growth of large-area HgCdTe arrays on Si.  相似文献   

10.
Oxygen ions were implanted into the amorphous silicon film deposited at 540°C in order to study the effects of oxygen on the solid phase crystallization of silicon films. The resulting films were investigated using transmission electron microscopy, x-ray diffraction (XRD), and also by measuring the electrical characteristics of polycrystalline silicon thin film transistors (TFTs) fabricated in the crystallized films. The development of {111} texture as a function of annealing time is similar to films implanted with Si, with higher oxygen samples showing more texture. Transmission electron microscopy shows that the grain size of completely crystallized films varies little with oxygen concentration. The electrical performances of TFTs are found to degrade with increasing oxygen dose. The trap state density increases from 5.6 × 1012/cm2 to 9.5 × 1012/cm2 with increasing oxygen dose. It is concluded that for a high performance TFT, oxygen incorporation in the Si film should be kept to 1019/cm3 or less.  相似文献   

11.
Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90℃.The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques.Deposited films were obtained at -0:60 V vs.SCE and characterized by XRD,SEM,FTIR, optical,photoelectrochemical and electrical measurements.Thickness of the deposited film was measured to be 357 nm.X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along (002) plane.FTIR results confirmed the presence of ZnO films at peak 558 cm-1.SEM images showed uniform,compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape.Optical properties of ZnO reveal a high optical transmission (>80%) and high absorption coefficient (α>105 cm-1)in visible region.The optical energy band gap was found to be 3.28 eV.Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction.Electrical properties of ZnO films showed a low electrical resistivity of 6.54 Ω·cm,carrier concentration of -1.3×1017cm-3 and mobility of 7.35 cm2V-1s-1.  相似文献   

12.
ZnO films were deposited on glass substrates in the temperature range of 350–470 °C under an atmosphere of compressed air or nitrogen (N2) by using ultrasonic spray pyrolysis technique. Structural, electrical and optical properties of the ZnO films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical two-probe and optical transmittance measurements. The ZnO films deposited in the range of 350–430 °C were polycrystalline with the wurtzite hexagonal structure having preferred orientation depending on the substrate temperature. The ZnO films deposited below 400 °C had a preferred (100) orientation while those deposited above 400 °C mostly had a preferred (002) orientation. The resistivity values of ZnO films depended on the types of carrier gas. The ZnO thin films deposited under N2 atmosphere in the range of 370–410 °C showed dense surface morphologies and resistivity values of 0.6–1.1 Ω-cm, a few orders of magnitude lower than those deposited under compressed air. Hydrogen substition in ZnO possibly contributed to decreasing resistivity in ZnO thin films deposited under N2 gas. The Hall measurements showed that the behavior of ZnO films deposited at 410 °C under the N2 atmosphere was n-type with a carrier density of 8.9–9.2×1016 cm-3 and mobility of ~70 cm2/Vs. ZnO thin films showed transmission values at 550 nm wavelength in a range of 70–80%. The values of band gaps extrapolated from the transmission results showed bandgap shrinkage in an order of milli electron volts in ZnO films deposited under N2 compared to those deposited under compressed air. The calculation showed that the bandgap reduction was possibly a result of carrier–carrier interactions.  相似文献   

13.
Niobium-doped indium tin oxide(ITO:Nb)thin films are fabricated on glass substrates by radio frequency(RF)magnetron sputtering at different temperatures.Structural,electrical and optical properties of the films are investigated using X-ray diffraction(XRD),atomic force microscopy(AFM),ultraviolet-visible(UV-VIS)spectroscopy and electrical measurements.XRD patterns show that the preferential orientation of polycrystalline structure changes from(400)to(222)crystal plane,and the crystallite size increases with the increase of substrate temperature.AFM analyses reveal that the film is very smooth at low temperature.The root mean square(RMS)roughness and the average roughness are 2.16 nm and 1.64 nm,respectively.The obtained lowest resistivity of the films is 1.2×10-4?.cm,and the resistivity decreases with the increase of substrate temperature.The highest Hall mobility and carrier concentration are 16.5 cm2/V.s and 1.88×1021 cm-3,respectively.Band gap energy of the films depends on substrate temperature,which is varied from 3.49 eV to 3.63 eV.  相似文献   

14.
This paper describes the effect of Al doping (0 at.% to 6 at.%) on the structural and optoelectronic properties of nanocrystalline ZnO thin films deposited by thermal evaporation. X-ray diffraction patterns confirm that an increase in Al concentration (from 0% to 6%) in ZnO lowers the crystallinity of the films and reduces grain size. Al doping is also found to influence the optical properties of the ZnO thin films. Visible transmittance above 85% was obtained by increasing the Al doping to 6%. The optical bandgap was found to vary from 3.20 eV to 3.97 eV with changing Al content from 0% to 6%, which is in accordance with the Burstein–Moss shift. The mobility of ZnO thin films can be varied from 5.60 cm2/Vs to 24.25 cm2/Vs, the carrier concentration from 5.93 × 1018/cm3 to 9.11 × 1020/cm3, and the resistivity from 4.62 × 10−4 Ω cm to 4.34 × 10−2 Ω cm, depending on the Al doping concentration (0% to 6%). This study suggests that ZnO:Al films can be tailor-made to meet the requirements for various optoelectronic applications such as flexible photocells or ultraviolet (UV) photodetectors covering a wide range of short wavelengths.  相似文献   

15.
氩气压强对溅射法制备Ga掺杂ZnO薄膜性能的影响   总被引:2,自引:2,他引:0  
采用射频磁控溅射法在玻璃衬底上制备了高质量的Ga掺杂ZnO透明导电薄膜(GZO).通过X射线衍射、原子力显微镜、四探针电导率测试仪等表征方法研究了溅射气压对薄膜结晶特性及导电性能的影响.所制备的GZO薄膜是具有六角纤锌矿结构的多晶薄膜,最佳择优取向为(002)方向.随着溅射气压的增大,薄膜方块电阻与薄膜电阻率均随之增大.最小方块电阻可达17.6 Ω/□,最小薄膜电阻率为7.3×10~(-4) Ω·cm.另外,GZO薄膜在可见光范围内的透过率达到了90%以上.  相似文献   

16.
Undoped and fluorine doped ZnO thin films were deposited onto glass substrates using successive ionic layer adsorption and reaction (SILAR) technique and then annealed at 350 °C in vacuum ambience. The F doping level was varied from 0 to 15 at% in steps of 5 at%. The XRD analysis showed that all the films are polycrystalline with hexagonal wurtzite structure and preferentially oriented along the (002) plane. Crystallite sizes were found to increase when 5 at% of F is doped and then decreased with further doping. It was seen from the SEM images that the doping causes remarkable changes in the surface morphology and the annealing treatment results in well-defined grains with an improvement in the grain size irrespective of doping level. All the films exhibit good transparency (>70%) after vacuum annealing. Electrical resistivity of the film was found to be minimum (1.32×10−3 Ω cm) when the fluorine doping level was 5 at%.  相似文献   

17.
利用脉冲激光沉积法在石英衬底上制备了镓掺杂氧化锌(ZnO:Ga)透明导电薄膜,研究了衬底温度对薄膜的结构、表面形貌和光电性能的影响.研究表明:制备的ZnO:Ga薄膜是具有六角纤锌矿结构的多晶薄膜.随着衬底温度的增加,衍射峰明显增强,晶粒尺寸增大.当衬底温度为450℃时,薄膜的最低电阻率为8.5×10<'-4>Ω·cm,...  相似文献   

18.
Antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on the glass substrate at 450°C using spray pyrolysis technique. Effect of Sb doping on surface morphology structural, optical and electrical properties were studied. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (101) preferred orientation. SEM analysis showed a change in surface morphology of Sb doped ZnO thin films. Doping results in a marked increase in conductivity without affecting the transmittance of the films. ZnO films prepared with 3 at % Sb shows the lowest resistivity of 0.185 Ohm cm with a Hall mobility of 54.05 cm2 V–1 s–1, and a hole concentration of 6.25 × 1017 cm–3.  相似文献   

19.
溅射功率对PET衬底上ZnO:Zr薄膜性能的影响   总被引:1,自引:0,他引:1  
采用直流磁控溅射法在室温下柔性PET衬底上制备出了高质量的掺锆氧化锌(ZnO:Zr)透明导电薄膜。研究了溅射功率对ZnO:Zr薄膜表面形貌、结构、电学和光学性能的影响。溅射功率对ZnO:Zr薄膜的电阻率影响显著:当溅射功率从60W增加到90W时,薄膜的电阻率先减小后增大,在最佳功率80W时,电阻率具有最小值3.67×10-3Ω·cm。所制备的ZnO:Zr薄膜具有良好的附着性能,在可见光区平均透射率高达90%。  相似文献   

20.
Thin films of Si-doped AlxGa1−xN (0.03≤x≤0.58) having smooth surfaces and strong near-band edge cathodoluminescence were deposited at 0.35–0.5 μm/h on on-axis 6H-SiC(0001) substrates at 1100°C using a 0.1 μm AlN buffer layer for electrical isolation. Alloy films having the compositions of Al0.08Ga0.92N and Al0.48Ga0.52N exhibited mobilities of 110 and 14 cm2/V·s at carrier concentrations of 9.6×1018 and 5.0×1017 cm−3, respectively. This marked change was due primarily to charge scattering as a result of the increasing Al concentration in these random alloys. Comparably doped GaN films grown under similar conditions had mobilities between 170 and ∼350 cm2/V·s. Acceptor doping of AlxGa1−xN for x≤0.13 was achieved for films deposited at 1100°C. No correlation between the O concentration and p-type electrical behavior was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号