首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于0.18tm RF CMOS工艺,采用低中频系统结构,设计了一款可应用于全球定位导航系统(GPS) L1频段和北斗二代(BD2) B1频段的低噪声卫星导航接收机的射频模拟前端芯片.该前端包括低噪声放大器、无源混频器、中频放大器、复数带通滤波器和数控可变增益放大器.其中低噪声放大器采用电流舵技术,与无源混频器一起,提高了射频前端的1 dB压缩点输入功率(Pi(1dB)),有效地改善了系统的线性度.测试结果显示,在GPS L1频点,系统的最大增益107.2 dB,噪声系数达到1.8 dB,动态增益66 dB,镜像抑制比约为39.54 dB,Pi(1dB)为-41 dBm,电源为1.8V时,消耗电流16 mA,芯片面积1.7 mm×0.8 mm.  相似文献   

2.
本文介绍了一种用于卫星导航接收机中的多模低噪声放大器模块的设计.采用主流CMOS工艺,对源极负反馈的共源共栅放大器的放大管栅源两极间增加可调电容、调整偏置电压、共用片外匹配以及调整输出电感的方法,实现多个频点的噪声和功率匹配.采用TSMC 0.18μm 1P4M射频CMOS工艺进行流片验证,在1.207GHz到1.575GHz频段多个频点处的可获得17.3dB到18.5dB增益,在1.8V工作电压下,噪声系数均小于1.8dB,工作电流均小于3.6mA,完全满足接收机的应用.  相似文献   

3.
李兵  庄奕琪  李振荣  靳刚 《半导体学报》2010,31(12):125001-7
本文介绍了一种用于全球卫星导航系统射频前端的双频点低噪声放大器的设计,讨论了针对双频点或多频点的低噪声放大器的设计方法,分析了具体的电路设计和相关参数的确定并进行仿真.采用台积电0.18um 1P4M射频CMOS工艺进行流片验证,低噪声放大器噪声特性可分别在两个频点1.27GHz和1.575GHz处达到16.8dB和18.9dB,实测噪声系数可达1.5dB~1.7dB之间.此结构在1.8V工作电压下,电流小于4.3mA.流片结果与原设计情况相符,完全满足射频前端接收机的需求.  相似文献   

4.
马何平  徐化  陈备  石寅 《半导体学报》2015,36(8):085002-7
本文描述了一种工作在2.4GHz ISM频段的低功耗、低中频射频接收机前端电路,使用TSMC 0.13um CMOS工艺。整个前端包括一个低噪声放大器以及两次变频下变换混频器。低噪声放大器通过在输入级引入额外的栅-源电容实现了低功耗与低噪声的设计;在下变换混频器设计中,分别使用一个单平衡射频混频器以及两个双平衡低中频混频器实现两次变频下变换技术;射频混频器输入晶体管源极串联电感-电容谐振网络以及低噪声放大器输出级的电感-电容谐振网络总共实现了30dB的镜像抑制率。整个前端占用芯片面积约0.42mm2,在1.2V的供电电压下,仅耗功率4.5mW,实现了4dB的噪声系数,在高增益模式下,获得-22dBm的三阶交调线性度,整个链路电压增益为37dB。  相似文献   

5.
本文设计了一种应用于GNSS接收机的无电感多模射频前端。与传统低噪声放大器结构不同,本设计使用了无电感电流模式以及利用噪声消除技术的低噪声放大器。其高阻输入的射频放大器进一步放大信号并将单端信号转为差分信号。后级无源混频器将信号下变频到中频并将信号传输到下一级的模拟电路模块。文中还有本振缓冲器实现压控振荡器的二分频和25%占空比的方波新号的产生用于控制混频器开关。测试结果表明该射频前端在1.2V电源电压下仅消耗6.7mA电流,并获得了良好的综合性能。射频前端的输入回损为-26dB,而1.43dB的低噪声系数也保证了良好的接收灵敏度。在射频前端电压增益为48dB情况下,测得的输入1dB压缩点为-43dBm。该电路采用了55nm标准CMOS工艺实现,面积非常小,仅仅为220 μm×280 μm左右。  相似文献   

6.
实现了一个应用于IEEE 802.11b无线局域网系统的2.4GHz CMOS单片收发机射频前端,它的接收机和发射机都采用了性能优良的超外差结构.该射频前端由五个模块组成:低噪声放大器、下变频器、上变频器、末前级和LO缓冲器.除了下变频器的输出采用了开漏级输出外,各模块的输入、输出端都在片匹配到50Ω.该射频前端已经采用0.18μm CMOS工艺实现.当低噪声放大器和下变频器直接级联时,测量到的噪声系数约为5.2dB,功率增益为12.5dB,输入1dB压缩点约为-18dBm,输入三阶交调点约为-7dBm.当上变频器和末前级直接级联时,测量到的噪声系数约为12.4dB,功率增益约为23.8dB,输出1dB压缩点约为1.5dBm,输出三阶交调点约为16dBm.接收机射频前端和发射机射频前端都采用1.8V电源,消耗的电流分别为13.6和27.6mA.  相似文献   

7.
本文给出了一个采用TSMC 0.18 m CMOS工艺应用于X波段SAR(合成孔径雷达)的单片接收机射频前端的设计。接收机前端由低噪声放大器和混频器组成,低噪声放大器工作在9 GHz~11GHz,混频器将10GHz的射频信号转换到2GHz中频,本振信号由片外提供。在X波段频率下,尽管CMOS 0.18μm工艺特征频率比较低,工作仍然实现了低噪声系数,提高了集成度。测试结果表明,本设计在300MHz的带宽上实现了20dB的转换增益,噪声系数达到2.7Db,输入1dB压缩点达到-19.2dBm,在1.8V的电源电压下前端消耗26.6mA电流,芯片面积为1.3×0.97mm2。  相似文献   

8.
设计和制造了频率覆盖范围8~18GHz的宽带单片低噪声放大器。通频带内,其噪声系数小于4.3dB,相关增益8.5dB。新设计的低噪声放大器用于W波段(75~110GHz)接收机作为中频放大器。该放大器的射频性能适用范围宽,并且可以作为廉价的增益功能块。  相似文献   

9.
设计了一种可用于多模式卫星导航接收机的射频前端低噪声放大器,设计电路可在1.13~1.95 GHz工作,兼容了GPS,北斗及GLONOSS导航系统的工作频段。电路采用0.18 μm CMOS工艺实现。仿真结果表明,频带内S11和S22均在-10 dB以下,功率增益>10 dB,带内最小噪声系数可达到2.2 dB,输出1 dB压缩点为-5.585 dBm,在1.8 V电源电压下,主体电路消耗12 mA电流。因此,该低频噪声放大器模块可满足当前各种导航系统的工作要求。  相似文献   

10.
韩洪征  王志功 《电子工程师》2008,34(1):22-25,46
介绍了一种应用于IEEE802.11b/g无线局域网接收机射频前端的设计。基于直接下变频的系统架构。接收机集成了低噪声放大器、I/Q下变频器、去直流偏移滤波器、基带放大器和信道选择滤波器。电路采用TSMC0.18μm CMOS工艺设计,工作在2.4GHz ISM(工业、科学和医疗)频段,实现的低噪声放大器噪声系数为0.84dB,增益为16dB,S11低于-15dB,功耗为13mW;I/Q下变频器电压增益为2dB,输入1dB压缩点为-1 dBm,噪声系数为13dB,功耗低于10mw。整个接收机射频前端仿真得到的噪声系数为3.5dB,IIP3为-8dBm,IP2大于30dBm,电压增益为31dB,功耗为32mW。  相似文献   

11.
伴随着无线通信技术日新月异的发展,人们对宽频带、高速率、大容量通信系统的需求也日益增大.毫米波由于自身具有波长短、传输容量大等优点,日益受到研究人员的广泛关注和青睐.本文针对42GHz频段点对点高速通信应用,设计研制了该频段的毫米波接收机前端.该前端由三级低噪声放大器(LNA)、一级混频器和一个基片集成波导(siw)镜像抑制滤波器构成.射频(RF)信号工作在40.8GHz~ 42.8GHz频段内,中频(IF)固定在3.5GHz.测试结果显示,在工作频段内其变频增益大于15dB,射频输入功率ldB增益压缩点不低于-30dBm,接收机前端的噪声系数(NF)小于6dB.  相似文献   

12.
提出并设计了一种应用于GPS接收机中的1.5 GHz低噪声放大器,该放大器采用TSMC 0.25μm RF CMOS工艺制作.与传统的共源共栅结构相比,该电路引入了级间耦合电容,使整个电路的功率增益、噪声系数等关键性能指标得到改善.该放大器的正向功率增益为21.8 dB,NF为0.96 dB,IIP3为-11 dBm,功耗为20 mW,且输入输出阻抗匹配良好,满足GPS接收机射频前端对低噪声放大器的要求.  相似文献   

13.
秦希  黄煜梅  洪志良 《半导体学报》2013,34(3):035006-7
本文中使用0.13μm CMOS工艺实现了一款应用于脉冲式超宽带无线电的接收机射频前端电路。由于使用了欠采样的接收机架构,接收机中不再具有混频过程。因此,低噪声放大器和可变增益放大器均需要直接处理宽带射频信号。为了优化噪声和线性度,低噪声放大器使用了具有电容交叉耦合的全差分共栅结构,在1.2V电源下仅消耗了1.8mA电流。低噪声放大器之后,一个具有两级结构的电流引导型可变增益放大器被用来实现增益调节功能。同时,低噪声放大器和两级可变增益放大器共同构成了一个三级参差峰化网络,以提高接收机的总体带宽。测试结果表明,该射频前端模块在6-7GHz带宽内实现了5-40dB的增益调节范围,最小噪声系数和最大输入三阶交调分别达到了4.5dB和-11dBm。电路总体功耗为14mW,使用1.2V电源电压,核心部分芯片面积为0.58mm2.  相似文献   

14.
张会  钱国明 《微电子学》2017,47(4):478-482
采用RC负反馈、源极电感负反馈等方法,设计并制作了一种基于MMIC技术的3~15 GHz超宽带低噪声放大器,在超宽带范围内实现了优良的回波损耗和平坦的高增益。采用0.15 μm GaAs pHEMT工艺进行设计,该放大器的芯片尺寸为2 mm×1 mm,直流功耗为200 mW。在片测试结果表明,带内增益高达28 dB,4~12 GHz带宽范围内的噪声系数低于2 dB,输入/输出回波损耗大于15 dB,测试结果与仿真结果十分吻合。该低噪声放大器可应用于S,C,X,Ku波段外差接收机以及毫米波、亚毫米波接收机的中频模块。  相似文献   

15.
采用TSMC 0.25μm CMOS工艺,设计了一个全集成2.4 GHz低中频蓝牙接收机前端,包括低噪声放大器(LNA)和混频器(Mixer)。LNA采用源极电感负反馈差分结构,混频器采用吉尔伯特(Gilbert)有源双平衡结构。在2.5 V工作电压下,整个接收机前端增益22.5 dB,噪声系数6.3 dB,三阶输入截止点-15.3 dBm,功耗38.4 mW。  相似文献   

16.
提出了采用0.18μm CMOS工艺,应用于802.11a协议的无线局域网接受机的低噪声放大器和改进的有源双平衡混频器的一些简单设计概念。通过在5.8 GHz上采用1.8 V供电所得到的仿真结果,低噪声放大器转换电压增益,输入反射系数,输出反射系数以及噪声系数分别为14.8 dB,-20.8 dB,-23.1 dB和1.38 dB。其功率损耗为26.3 mW。设计版图面积为0.9 mm×0.67 mm。混频器的射频频率,本振频率和中频频率分别为5.8 GHz,4.6 GHz和1.2 GHz。在5.8 GHz上,混频器的传输增益,单边带噪声系数(SSB NF),1 dB压缩点,输入3阶截点(IIP3)以及功率损耗分别为-2.4 dB,12.1 dB,3.68 dBm,12.78 dBm和22.3 mW。设计版图面积为1.4 mm×1.1 mm。  相似文献   

17.
摘要:本文阐述了支持八波段可调谐时分LTE多模接收机前端的分析与设计,覆盖1.8~2.7GHz频率范围并支持5/10/15/20MHz三种带宽和QPSK/16QAM/64QAM 三种调制方式。零中频可调谐接收机前端的设计包括了可调谐窄带可变增益低噪声放大器,电流型下变频混频器和二阶低通输出跨阻放大器,可变增益预放大器,可调谐四阶切比雪夫低通信道选择滤波器和截止频率矫正电路,中频可变增益放大器。 窄带低噪声放大器可以在调谐范围内自由调节中心频率,从而替代了传统多模接收机中的低噪声放大器阵列,节省了芯片面积。模拟基带部分也可以通过数字接口调节增益和信道选择带宽。芯片在SMIC 0.13μm 1P8M CMOS上实现,测试结果显示双边带噪声系数达到4.6dB, 带外IIP3达到-14.5dBm,30~94dB增益范围。1.2V电源电压下芯片消耗功耗为54mA。  相似文献   

18.
本文介绍了一种新的低功耗射频接收机前端, 适用于3-5GHz的超宽带系统. 基于0.13µm CMOS工艺实现, 该直接转换式接收机由宽带噪声抵消结构的跨导输入级, 正交无源混频器和跨阻负载放大器组成. 测试结果显示该接收机在整个3.1-4.7GHz 频带范围内的输入反射系数小于-8.5dB, 转换增益27dB, 噪声系数4dB, 输入三阶交调点-11.5dBm, 输入二阶交调点33dBm. 工作在1.2V电源电压下, 整个接收机共消耗18mA电流, 其中包括10mA用于片上正交本振信号产生和缓冲电路.芯片面积为1.1mm×1.5mm.  相似文献   

19.
采用0.18μm Si RFCMOS工艺设计了应用于s波段AESA的高集成度射频收发前端芯片。系统由发射与接收前端组成,包括低噪声放大器、混频器、可变增益放大器、驱动放大器和带隙基准电路。后仿真结果表明,在3.3V电源电压下,发射前端工作电流为85mA,输出ldB压缩点为5.0dBm,射频输出在2~3.5GHz频带内电压增益为6.3~9.2dB,噪声系数小于14.5dB;接收前端工作电流为50mA,输入1dB压缩点为-5.6dBm,射频输入在2~3.5GHz频带内电压增益为12—14.5dB,噪声系数小于11dB;所有端口电压驻波比均小于1.8:芯片面积1.8×2.6mm0。  相似文献   

20.
郭瑞  张海英 《半导体学报》2012,33(9):095003-6
设计了应用于TD-SCDMA/LTE/LTE-Advanced收发机中的多频段、多模式射频接收前端电路. 该前端电路采用直接变频结构,包含两个可调谐差分低噪声放大器、一个正交混频器和两个中频放大器。其中,两个独立的可调谐低噪声放大器覆盖了4个射频频段,在较低的功耗下实现足够的增益和噪声性能. 并且利用开关电容阵列来调节低噪声放大器的谐振频率点. 低噪声放大器通过混频器的驱动级跨导晶体管实现结合。正交混频器采用折叠式双平衡吉尔伯特结构,利用PMOS晶体管作为本振信号的开关对,从而降低1/f噪声. 前端电路具有3种增益模式以获得更大的动态范围. 模式配置和频段选择功能都由片上的SPI模块控制. 该射频前端电路采用TSMC0.18um RF CMOS工艺实现,芯片面积为1.3 mm2. 全部频段上测量的转换增益高于43dB,双边带噪声系数低于3.5dB. 整个电路在1.8V供电电压下,消耗电流约31mA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号