首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
太赫兹变频组件是实现太赫兹成像和通信应用的关键器件。本文中介绍了基于hammer-head 滤波器紧凑结构, 结合肖特结二极管的三维模型和电气模型,设计低变频损耗250GHz 太赫兹谐波混频器的方法。在高倍光学显微镜的精 准测量下,建立尺寸可以跟信号波长相比拟的二极管三维模型,准确模拟二极管的高频特性以提高电磁仿真精度。为了 进一步降低太赫兹混频器的变频损耗,文中除了采用紧凑型的hammer-head 滤波器结构外,同时通过波导探针直接实现 与二极管阻抗的匹配,简化了混频器的结构降低谐波信号传输线损,从而降低太赫兹谐波混频器的变频损耗。最终仿真 结果表明,250GHz 谐波混频器在3dBm 的本振功率驱动下,在230~270GHz 射频范围内,变频损耗(SSB)均小于6.8dB, 最低变频小于6.2dB,中频带宽大于20GHz。  相似文献   

2.
何月  蒋均  缪丽  陆彬 《微波学报》2016,32(5):15-18
为了进一步降低太赫兹接收机的噪声,介绍了基于平面肖特基二极管实现低噪声太赫兹谐波混频器的方法。在建立肖特基二极管较为精确的三维模型和电气模型的前提下,引入紧凑型hammer-head 滤波器结构,同时结合低损耗石英固态电路混合集成的方法,研制了220GHz 和250GHz 太赫兹谐波混频器。测试表明:220GHz混频器在205~235GHz工作范围内最低双边带变频损耗小于6.5dB,最低噪声温度小于650K,250GHz 混频器在230~270GHz 工作范围内最低双边带变频损耗小于6.5 dB,最低噪声温度小于900K。  相似文献   

3.
常温固态太赫兹谐波混频器是太赫兹系统应用中的关键器件。介绍了一款基于肖特基二极管的670 GHz四次谐波混频器的仿真与设计。在高频结构仿真软件(HFSS)中对准垂直结构肖特基势垒变阻二极管进行三维结构建模,采用基于谐波平衡算法的整体综合仿真方法对混频器进行仿真和优化。结果表明:在功率为10 mW的167 GHz本振信号驱动下,混频器单边带变频损耗在637~697 GHz射频频率范围内小于13.8 dB,3 dB变频损耗带宽为60 GHz;最优单边带变频损耗在679 GHz为10.6 dB。  相似文献   

4.
肖特基二极管混频器是毫米波太赫兹频段的超外差接收机中的关键器件,其研制对于太赫兹通信和雷达应用具有重要意义。本文描述了一种基于低寄生参量肖特基Z-极管DBES105a的140GHz二次谐波混频器(SHM)的仿真设计和制作测试。为了计算二极管特性阻抗,通过对二极管半导体物理结构的研究,建立了肖特基二极管三维电磁仿真模型。次谐波混频器采用波导腔体悬置微带线结构,通过HFSS+ADS联合仿真设计。仿真结果显示,在65GHz,7dBm本振信号激励下,140GHz频点处的SSB转换损耗为6.3dB,1dB转换损耗带宽为14GHz,DSB噪声温度小于400K。测试结果显示,最低SSB转换损耗为26dB/135GHz,3dB转换损耗带宽为8GHz。  相似文献   

5.
在对肖特基二极管电磁模型和电路模型精确建模的基础上,设计并制作了W波段宽带八次谐波混频器.通过对肖特基二极管物理结构的分析,建立了其精确的三维电磁仿真模型和直到180 GHz的改进的宽带等效电路模型.针对W波段八次谐波混频器混频产物能量分布特点和工作带宽要求,设计了宽带射频和本振匹配网络,使混频器的工作带宽能覆盖整个W波段.测试结果显示,射频信号在75~110 GHz频率范围内,W波段八次谐波混频器最大变频损耗28 d B,最小变频损耗18 d B.  相似文献   

6.
基于电子科技大学与中国电子科技集团第十三研究所自主联合设计的肖特基二极管研制宽带360~440 GHz分谐波混频器。详细描述二极管建模,以模拟在极高频复杂电磁环境中由于二极管结构引入的相关寄生效应.在软件HFSS与ADS中,通过场与路结合的方法对分谐波混频器进行优化.实测结果显示在本振信号为210 GHz本振功率6 d Bm的驱动下,在406 GHz可得到最小变频损耗9.99 d B,在380~430 GHz范围内,变频损耗小于15 d B,在360~440 GHz范围内,变频损耗小于19 d B.  相似文献   

7.
胡海帆  赵自然  马旭明  姜寿禄 《红外与激光工程》2019,48(7):722001-0722001(6)
基于Hammer-Head型滤波器结构,以及三维电磁软件所构建的肖特基二极管三维模型及电气模型,分别设计了250 GHz悬置微带线和普通微带线的二次谐波混频器。通过仿真设计与实物测试,对比分析两种结构混频器特性。测试结果表明,悬置微带线混频器在射频输入230~270 GHz范围内时,单边带变频损耗为8.6~12.7 dB,而普通微带线混频器在射频输入220~260 GHz范围内时,单边带变频损耗为8.4~11.4 dB。通过结果对比可见,悬置微带线混频器带宽较大,而普通微带线混频器的变频损耗更为平滑。此外,考虑微组装工艺中的不良因素,对仿真模型进行部分修正,计算结果与测试结果拟合较好。  相似文献   

8.
太赫兹分谐波混频器的变频损耗、噪声系数等指标与基波混频器相近,且本振频率为射频频率的一半,大大降低了本振源的设计难度和制作成本,是高性能太赫兹接收前端的关键部件。本文介绍了一种覆盖全波导带宽的太赫兹宽带分谐波混频器的设计,对电路中射频波导至悬置带线过渡结构和本振中频双工器进行仿真和优化设计。并以0.14~0.22THz分谐波混频器为例进行设计和制作,测试结果表明0.14~0.22THz分谐波混频器在全波导频段内最大变频损耗低于15d B,中频3d B带宽大于20GHz。  相似文献   

9.
基于X波段源,通过9×2×2次倍频链实现了输出约1-2m W的320-356GHz全固态倍频源。该信号源作为本振信号驱动664GHz接收前端的二次谐波混频器,该混频器采用了有源偏置技术以降低混频器的本振驱动功率和接收机的噪声温度。仿真结果表明,混频二极管在0.3m W本振驱动功率及0.35V直流偏置下,在650-680GHz带宽内,仿真得到的单边带变频损耗小于12d B,666GHz最小损耗为10.8d B。  相似文献   

10.
在太赫兹频段,二极管尺寸与波长相比已不能忽略,二极管的封装会引入很大的寄生参量,因此需建立二极管三维模型提取寄生参数.同时人工装配难度增大,会增加电路不确定性.采用12μm砷化镓单片集成悬置微带线结构,基于电子科技大学与中国电子科技集团第十三研究所自主联合设计的肖特基二极管研制330 GHz砷化镓单片集成分谐波混频器.实测结果显示在5 mW本振功率的驱动下,在328 GHz可得到最小变频损耗10.4 dB,在320~340 GHz范围内,单边带变频损耗小于14.7 dB.  相似文献   

11.
为研制太赫兹多频段高灵敏度探测仪,依靠太赫兹砷化镓平面肖特基二极管的非线性特性,结合石英薄膜工艺,设计了宽带0.67 THz谐波混频器,并分析了砷化镓平面肖特基二极管性能表征参数指标对太赫兹混频器性能的影响。0.67 THz谐波混频器采用整体综合的设计方法,结合电气仿真软件ADS和电磁仿真软件HFSS,优化电路中不连续性微带与波导之间的电磁空间耦合效率,以混频器的变频损耗为优化目标,最终实现0.67 THz谐波混频器仿真设计。0.62~ 0.72 THz射频范围内,混频器单边带最低变频损耗小于8 dB,本振功率小于4 mW,本振端口与中频端口、射频端口与中频端口之间隔离度大于-30 dB。  相似文献   

12.
采用电磁场和电路联合仿真,基于直流测试和三维电磁建模仿真技术,建立了截止频率5 THz的混频肖特基二极管的等效电路模型。重点研究了二极管的非线性结模型和外围结构三维电磁全波仿真模型,构建了考虑实际电路形式的四端口三维电磁全波仿真模型。该等效电路模型可用于太赫兹低频段混频模块设计,该模型的建立方法也为更高频段模型的建立提供了一种参考。基于该模型设计了一款220 GHz分谐波混频器,在192~230 GHz宽带范围内,双边带变频损耗小于10 dB,测试结果与仿真结果较为一致。  相似文献   

13.
论文重点论述了固态太赫兹信号发生和接收技术,太赫兹信号发生采用倍频级联的方案,重点解决了倍频器的 压缩点、驱动功率和倍频效率等三个方面的问题,实现了频率覆盖500GHz 的大功率信号发生。信号接收采用了分谐波 混频的方案,通过构建二极管模型,利用超薄微带电路,实现了混频电路的一体化设计,完成了宽带、低变频损耗的分 谐波混频器,频率覆盖至500GHz。  相似文献   

14.
李凯 《微波学报》2015,31(1):88-91
太赫兹波是电磁波谱中最后一个未被全面研究开发的频率窗口,它的开发和利用具有重大的科学价值。介绍了一种太赫兹频段内340GHz基于肖特基势垒二极管的四次谐波混频器设计。应用高频场仿真软件(HFSS)以及谐波平衡仿真软件(ADS),对反向并联二极管对进行3D建模及阻抗频率特性分析,并在此基础上对混频器进行优化。最后,对该混频器进行加工和测试,结果表明,在327~343GHz频带范围内,变频损耗小于15dB,最优值为12.7dB。  相似文献   

15.
论文重点论述了固态太赫兹信号发生和接收技术,太赫兹信号发生采用倍频级联的方案,重点解决了倍频器的压缩点、驱动功率和倍频效率等三个方面的问题,实现了频率覆盖500GHz的大功率信号发生。信号接收采用了分谐波混频的方案,通过构建二极管模型,利用超薄微带电路,实现了混频电路的一体化设计,完成了宽带、低变频损耗的分谐波混频器,频率覆盖至500GHz。  相似文献   

16.
为了缓解微波频段频谱资源的日益紧张,对太赫兹频段进行探索,介绍了一款基于GaAs肖特基二极管的330 GHz次谐波混频器。设计采用了整体综合设计的方法,进行高频结构模拟器(HFSS)与先进设计系统(ADS)联合仿真。优化过程中,电路不连续性通过HFSS仿真结果表征,电路传输特性和二极管非线性特性由ADS仿真结果表征,通过优化传输线参数,实现优化电路的目的。此方法增大了仿真优化空间,降低了设计难度。仿真结果显示,在300~350 GHz频段内,混频器的变频损耗小于8 dB。  相似文献   

17.
基于GaAs肖特基势垒二极管,研制出了两个不同波段的谐波混频器。在场仿真软件中,二极管的非线性结采用lumped端口来模拟,通过场分析方法分析二极管各端口的阻抗。谐波混频电路被分成不同部分来单独优化设计,基于优化设计的各独立电路,建立谐波混频器的整体场仿真模型,通过提取相应的S参数文件分析混频器的变频损耗。150GHz 谐波混频器测得最低变频损耗10.7dB,在135-165GHz变频损耗典型值为12.5dB。180GHz 谐波混频器测得最低变频损耗5.8dB,在165-200GHz变频损耗典型值为13.5dB,在210-240GHz变频损耗典型值为11.5dB。  相似文献   

18.
采用商用DMK2308Ga As肖特基二极管管对,设计了一种U波段分谐波混频器。利用全波电磁场分析算法提取了二极管管对无源部分的寄生参量,建立了二极管管对的等效电路模型,并用于分谐波混频器的设计。测试结果显示:本振功率为10d Bm时,变频损耗在50~58GHz小于14.5d B,与仿真结果基本吻合,证明了所建模型的有效性。  相似文献   

19.
基于70 nm InP高电子迁移率晶体管(HEMT)工艺,研制了一款175~205 GHz分谐波混频器太赫兹单片集成电路(TMIC)。使用三线耦合Marchand巴伦实现本振信号的平衡-不平衡转换。在射频端口设计了紧凑型耦合线结构的带通滤波器,实现对射频信号低损耗带通传输的同时缩小了芯片尺寸。测试结果表明混频器在175~205 GHz频率范围内,单边带(SSB)变频损耗小于15 dB,典型值14 dB。混频器中频频带为DC~25 GHz,射频端口对本振二次谐波信号的隔离度大于20 dB。芯片尺寸为1.40 mm×0.97 mm,能够与相同工艺的功率放大器、低噪声放大器实现片上集成,从而满足太赫兹通信等不同领域的应用需求。  相似文献   

20.
基于Schottky二极管和Hammer-Head滤波器0.67 THz二次谐波混频器   总被引:2,自引:2,他引:0  
通过测量肖特基二极管的I-V和C-V曲线,建立等效电路模型.利用三维电磁场和谐波平衡仿真工具分别进行三维结构仿真和电路宽带匹配,最终实现混合集成方式的0.67THz谐波混频器设计.测试结果表明:混频器中心频率为0.685 THz,射频3 dB带宽为47 GHz,双边带变频损耗13.1~16 dB,在685 GHz双边带噪声温度最低值为11500 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号