首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从含铜铁的生物浸出液中选择性萃取铜的试验研究   总被引:1,自引:0,他引:1  
采用Lix984作萃取剂, 从含铜铁的生物浸出液中选择性萃取铜。通过考察溶液pH、相比O/A、初始铜浓度、萃取温度、搅拌速度及搅拌时间、萃取级数等因素对萃取率、分配比、分离系数的影响, 结果表明: 对不加铜的初始生物浸出液, pH大于2.22, 相比O/A=1∶1, 搅拌速度为200 r/min, 搅拌时间为4 min, 萃取级数为3级, 铜的萃取率能达到99.8%以上, 铜分配比能达到600以上, 铁分配比小于1, 铜铁分离系数能达到1 900以上, 同时发现低初始铜浓度及高萃取温度对萃取有利, 可见生物浸出液中铜铁能达到很好的分离效果。  相似文献   

2.
采用国产萃取剂N902从铜锌铁多金属矿浸出液中萃取分离Cu2+,考察了萃取剂体积浓度、萃取相比、振荡时间、萃取温度对铜萃取率的影响。在试验获得的较佳条件下对H2SO4含量为20.18g/L、30.38g/L的铜锌铁溶液分别进行3级逆流萃取,铜的萃取率分别为98.65%、96.50%,铜与锌、铁分离效果良好;以模拟电积后液为反萃原液进行四级逆流反萃,铜的反萃率约为88%,获得的反萃液可满足铜电积的要求。   相似文献   

3.
高铜高锌硫酸溶液中铜的萃取分离   总被引:6,自引:1,他引:5  
研究用M5640-煤油萃取体系从高铜高锌硫酸溶液中分离Cu2 正 的过程.结果表明,最佳的萃取条件为混合时间为3min,萃取温度为30-40℃.采用合适的相比多级逆流萃可以实现从该硫酸体系中萃取分离铜.若要将此高铜高锌硫酸溶液中铜的萃取率达到95%以上,至少需要11级逆流萃取.  相似文献   

4.
针对传统湿法炼锌过程铜回收工艺长、铜回收率低的难题,采用M5640直接从湿法炼锌还原浸出液中萃取分离回收铜,缩短铜回收流程,提高铜回收率。研究了混合时间、溶液pH值、萃取剂浓度、萃取级数等因素对铜萃取率的影响,以及反萃时间、相比等因素对载铜有机相中铜反萃率的影响。结果表明M5640对硫酸锌溶液中的铜离子具有很好的选择性萃取性能,在M5640浓度为15%、溶液pH值为2.0、相比(O/A)为1∶2、萃取时间为5 min的条件下,经过4级逆流萃取,铜萃取率为95.2%,锌萃取率仅为0.5%,铜锌分离系数为4 080。有机相经洗涤后,锌、铁等杂质离子被脱除,载铜有机相采用模拟铜电积废液反萃,经过2级逆流反萃,铜反萃率为97.1%。采用萃取-洗涤-反萃技术从湿法炼锌浸出液中回收铜,铜的总回收率为92.4%。  相似文献   

5.
M5640和Tn从酸浸液中萃取铜试验研究   总被引:1,自引:0,他引:1  
以金精矿硫酸化焙烧酸浸液为萃原液, 研究对比了M5640和Tn萃取剂从该萃原液中萃取铜及实现铜铁分离的效果。结果表明, M5640较Tn具有优越性, 对高铜品位及高酸度酸浸液有较强的适应性, 不但铜的萃取率高, 而且能更好地实现铜铁分离。  相似文献   

6.
从氨性溶液中萃取分离铜、钴的研究   总被引:8,自引:0,他引:8  
陈永强  邱定蕃  王成彦  尹飞  王忠 《矿冶》2003,12(3):61-63,45
研究了不同萃取剂从氨性溶液中分离铜、钴的过程。采用LIX984N作萃取剂,经一级萃取,溶液中铜的萃取率大于99%;用180g/L硫酸溶液对负载有机相进行反萃,经二级逆流反萃,铜的反萃率达99%以上。采用LIX54-100作萃取剂,经过四级逆流萃取铜的萃取率达到99 53%;用30g/L硫酸溶液对负载有机相进行反萃,经一级反萃,铜的反萃率大于99 9%。在上述萃取过程中,钴均不被萃取。  相似文献   

7.
采用Lix 984N对含杂质锌、砷、铁、锑的硫酸铜溶液进行了铜萃取分离和锌回收研究,解决了含多种杂质的硫酸铜溶液传统沉淀法存在的净化分离困难问题。研究结果表明,铜萃取分离采用3级萃取、1级洗涤和2级反萃,可得到锌、砷、铁、锑含量均低于2 mg/L的符合电积要求的硫酸铜溶液。萃余液采用Ca CO3预中和除去大部分砷、铁、锑,再用Na2CO3沉锌,得到含锌大于40%的高锌渣。  相似文献   

8.
研究了酰胺类萃取剂N503(N,N'-二(1-甲基庚基)乙酰胺)从盐酸溶液中萃取铟和铁的行为,考察了盐酸浓度、萃取剂浓度和氯离子浓度对铟、铁萃取率的影响。结果表明:盐酸浓度、萃取剂浓度对In(Ⅲ)和Fe(Ⅲ)的萃取率影响较显著,在研究的盐酸浓度范围内,溶液中铟、铁的萃取顺序为Fe(Ⅲ)In(Ⅲ)Fe(Ⅱ);当盐酸浓度为3 mol/L,N503浓度为20%时,Fe(Ⅲ)的萃取率接近100%,In(Ⅲ)的萃取率约为70%,Fe(Ⅱ)的萃取率小于1%,Fe(Ⅲ)与In(Ⅲ)难以选择性萃取分离,而Fe(Ⅱ)与In(Ⅲ)可以实现选择性萃取分离;Fe(Ⅲ)、In(Ⅲ)萃合物反萃性能接近,均能被稀盐酸反萃,难以实现选择性反萃分离。从盐酸溶液中萃取分离铟、铁的较佳工艺为:先采用铁粉将Fe(Ⅲ)还原为Fe(Ⅱ),再采用N503选择性萃取,然后用0.1 mol/L盐酸溶液反萃In(Ⅲ),铟、铁分离系数可以达到1 400,该研究可为铟、铁的分离提供数据基础和理论指导。  相似文献   

9.
Cyanex272在镍钴分离中的应用   总被引:8,自引:1,他引:7  
研究黑镍除钴渣酸溶后溶液用Cyanex272萃取钴,实现钴、镍的深度分离,并介绍其工业生产应用.试验结果表明混合时间3rnin,Co的萃取率可达98%以上;经2级萃取溶液中的Co2+由4.5降至0.01g/L以下;负载有机相经三级洗涤[Co]/[Ni]达到529.20;通过三级萃取,三级洗涤,钴的萃取率达99.90%以上,镍钴分离系数βCo/Ni为2.50×105;两级反萃使有机相含Co2+降至0.020g/L以下;采用去离子水二级洗涤,Cl-几乎100%被洗掉,不会进入硫酸镍溶液中循环积累.工业实践中黑镍除钴渣酸溶后溶液经P204萃取除铜、铁-Cyanex272萃取分离镍钴-氯化钴溶液草酸沉淀-草酸钴煅烧,产出的精制氧化钴粉达到国家Y1级标准,产出的硫酸镍溶液完全满足生产1#电镍的要求.  相似文献   

10.
研究了酰胺类萃取剂N503(N,N′?二(1?甲基庚基)乙酰胺)从盐酸溶液中萃取铟和铁的行为,考察了盐酸浓度、萃取剂浓度和氯离子浓度对铟、铁萃取率的影响。结果表明:盐酸浓度、萃取剂浓度对In(III)和Fe(III)的萃取率影响较显著,在研究的盐酸浓度范围内,溶液中铟、铁的萃取顺序为Fe(III)>In(III)>Fe(II)。当盐酸浓度为3 mol?L-1,N503浓度为20 %时,Fe(III)的萃取率接近100 %,In(III)的萃取率约为70 %,Fe(II)的萃取率小于1 %。因此Fe(III)与In(III)难以选择性萃取分离,Fe(II)与In(III)可以实现选择性萃取分离。且Fe(III)、In(III)萃合物反萃性能接近,均能被稀盐酸反萃,难以实现选择性反萃分离。因而,获得从盐酸溶液中萃取分离铟铁的工艺为:先采用铁粉将Fe(III)还原为Fe(II),再采用N503选择性萃取,0.1 mol?L-1盐酸溶液反萃In(III),铟铁的分离系数可以达到1400,为铟、铁的分离提供数据基础和理论指导。  相似文献   

11.
本文详细介绍了从独居石铀钍渣盐酸全溶的溶液中回收铀、钍和稀土的工艺.成功地研究出在1.5—2.0mol/L 盐酸介质中用20%DMHMP-5%TBP-煤油溶液有效地萃取铀、铁,与钍、稀土分离.萃取剂浓度和料液中盐酸浓度等是影响铀、铁萃取的主要因素.在研究中首次发现了在萃取铀、铁后含钍、稀土的盐酸介质中直接添加适量硝酸,用20%—40%DMHMP-煤油溶液能选择性地萃取钍,从而有效地与稀土分离.详细研究了 DMHMP、TBP 在盐酸-硝酸混合酸介质中的萃钍性能及其影响因素.同时对萃取铀、铁、钍后的水相,用 DMHMP、TBP 进行了苯取残留硝酸的比较研究.该研究成果已用于广东德庆稀土冶炼厂并投入生产,大量制备出符合国家标准的纱罩级硝酸钍和一级重铀酸铵.  相似文献   

12.
从铜氨溶液中萃取分离铜的试验研究   总被引:6,自引:3,他引:3  
采用N902萃取剂从氨-氯化铵体系浸出液中萃取分离二价铜,考察了萃取剂浓度、萃取相比和振荡时间对铜萃取率的影响。结果表明:在单级萃取中,铜萃取率平均为98.60%;在两级萃取中,铜萃取率大于99.99%,而且铜离子也得到了富集。  相似文献   

13.
废印刷线路板微生物浸出液中铜的选择性萃取   总被引:3,自引:0,他引:3  
张承龙  王景伟  白建峰  关杰 《金属矿山》2009,39(10):158-160
对萃取法分离废印刷线路板微生物浸出液中的铜进行了研究。结果表明:选用N902为萃取剂,可很好地选择性萃取浸出液中的铜,在萃取剂浓度为10%,萃取相比为1∶1,萃取搅拌时间为5 min的条件下,铜的萃取率可达99.51%,Cu与Fe的分离系数为2 058;以硫酸溶液为反萃剂对萃取获得的负载有机相进行反萃取,在硫酸溶液浓度为1.8 mol/L,反萃取相比为1∶1,反萃取搅拌时间为5 min的条件下,铜的反萃率可达93.57%。  相似文献   

14.
ZielinskiS.等人在《Hydrometallurgy》1998年48卷3期上撰文介绍重金属离子的沉淀反萃取工艺过程。D2EHPA煤油可从弱酸性溶液中几乎完全萃取锌、铅、铜、镉和镍。负载有机相用草酸、草酸加草酸铵或草酸钠溶液一段或多段沉淀反萃取,金属的沉淀反萃取率取决于反萃取剂的组成和pH值。所有被萃取金属几乎都可用30g/L草酸完全反萃取沉淀回收,一段反萃取率>90%。铅用硫酸溶液反萃取分离。添加草酸铵不能改善金属的沉淀反萃取效果,即使采用二段或三段反萃取,且各段pH最佳,其沉淀反萃取率…  相似文献   

15.
富钴结壳浸出液中钴镍的N235萃取分离   总被引:1,自引:0,他引:1  
对大洋富钴结壳硫酸活化浸出液经萃取分离铜、锌、锰后得到的镍钴富集溶液,用N235萃取分离镍钴。钴镍氯化物溶液用N235萃取分离的最佳的萃取工艺条件为室温,相比(O/A)=2~3:1。混合时间0.5min。经四级逆流萃取、洗涤与反萃。钴萃取率达99.99%,反萃率达99.81%,反萃液钴镍比达10^6。萃取分离后得到的氯化钴和氯化镍溶液纯度高,既可满足电解沉积金属的要求,又适于生产高纯化工产品。  相似文献   

16.
从生物浸出液中将铜萃取分离是后续制备电积铜的重要步骤。试验结果表明,M5640萃取剂可有效实现生物浸出液中的铜铁分离。在温度20℃,料液pH值1.50、萃取剂浓度30%、萃取相比(浸出液/有机相)4/1、萃取时间1.5min的萃取工艺参数条件下两级逆流萃取铜萃取率大于99.9%。  相似文献   

17.
介绍了硫酸铜、硫酸锰混合溶液中铜锰分离工艺的研究进展 ,给出了各分离工艺的主要技术指标 ,比较了不同分离工艺的技术参数、可操作性及经济性。由于大容量铜特效萃取剂的研制成功 ,使萃取分离工艺成为铜锰分离的有效而又经济的手段 ,有较好推广应用前景  相似文献   

18.
采用离心萃取器萃取净化氯化浸出镍溶液   总被引:1,自引:0,他引:1  
本研究了氯化浸出含镍物料所得的含钴铁量的高的镍溶液的净化和钴铁回收工艺,采用N235-异辛醇-煤油萃取体系在离心萃取器中分离镍与钴,铜,铁,锌,用离子交换除铅,用活性碳除有机物,得到可用于生产1号标准电镍的氯化镍溶液以及含Co大于100g/L,Co/Ni大于4000的氯化钴溶液和含Fe大于25g/L,Fe/Ni大于1000的氯化铁溶液,镍,钴回收率分别大于99%和97%。  相似文献   

19.
萃取-电沉积处理含铜氰化废水回收铜和氰化物   总被引:1,自引:0,他引:1  
以季铵盐N263为萃取剂,采用萃取—电沉积工艺对铜氰废液中的铜和氰化物进行回收。结果表明,N263对含氰溶液中的铜氰配合离子有良好的萃取能力,在高碱性条件下其对铜的单级萃取率仍超过90%;饱和负载有机相经反萃可为后续电沉积提供高浓度含铜溶液;提高电沉积温度有利于铜的回收与氰化物的保护;处理后尾液可直接用于氰化浸出。通过萃取—电沉积工艺实现了废水中铜和氰化物的综合回收利用。  相似文献   

20.
采用硫酸浸出-萃取-反萃工艺流程回收电镀污泥中的铜。运用MATLAB拟合了1 mol/L硫酸体系中铜的浸出动力学模型,表明该浸出过程为扩散和表面反应共同控制。在硫酸浓度1 mol/L、液固比15∶1条件下浸出10 min,铜浸出率达到90%。采用萃取-反萃取的方式回收浸出液中的Cu2+,以Mextral® 984H为萃取剂、Mextral® DT100为稀释剂,在溶液pH=2、萃取时间30 min、O/L相比1∶1、萃取剂浓度10%条件下萃取,铜萃取率可达99%;O/L相比1∶1、反萃取时间30 min,用25%的硫酸溶液进行反萃取,铜反萃取率可达95%。此工艺流程铜总回收率可达85%,实现了铜的高效回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号