首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
铜矿峪低品位铜矿细菌浸铜研究   总被引:4,自引:0,他引:4  
刘媛媛 《有色金属》2004,56(1):51-55
用氧化亚铁硫杆菌对铜矿峪矿低品位铜矿石进行生物氧化浸矿试验,从而在酸浸基础上进一步提高铜浸出率。结 果表明,添加细菌浸矿时,铜浸出率可提高10%以上。对地下溶浸工艺而言,先用细菌将Fe2 化为Fe3 ,再将溶液注入矿体,浸 出硫化矿中的铜是行之有效的方法。  相似文献   

2.
寿王坟铜矿存窿硫化矿微生物浸出研究   总被引:1,自引:0,他引:1  
刘坚 《有色金属》2003,55(Z1):89-91
采用氧化亚铁硫杆菌对寿王坟铜矿存窿硫化矿进行细菌浸出试验.试验结果表明,寿王坟铜矿存窿矿石可浸性总体较好,采用细菌浸出是可行的,酸耗约为13kg/t.柱浸试验,铜浸出率达62.2%~68.5%.细菌浸出工艺的成功,为充分合理地利用寿王坟铜矿存窿硫化矿资源奠定了基础.  相似文献   

3.
刘坚 《有色金属》2003,55(3):89-91
采用氧化亚铁硫杆菌对寿王坟铜矿存窿硫化矿进行细菌浸出试验。试验结果表明,寿王坟铜矿存窿矿石可浸性总体较好,采用细菌浸出是可行的,酸耗约为13kg/t。柱浸试验,铜浸出率达62.2%~68.5%。细菌浸出工艺的成功,为充分合理地利用寿王坟铜矿存窿硫化矿资源奠定了基础。  相似文献   

4.
某高磷铁矿生物浸出除磷试验研究   总被引:1,自引:0,他引:1  
采用4.5K培养基培养氧化亚铁硫杆菌,对某高磷铁矿进行了细菌浸出脱磷试验,研究了浸出过程中各工艺因素对氧化亚铁硫杆菌浸矿脱磷的影响.试验表明,浸出该高磷铁矿适宜的条件为:氧化亚铁硫杆菌接种量为15 mL,4.5K培养基85 mL,液固比100:5,试样粒度- 0.074+0.054 mm,初始pH值为1.8,在30℃下恒温振荡浸出6d,试样含磷可降至0.3%,脱磷率达到65.5%.浸出动力学研究表明:氧化亚铁硫杆菌浸出脱磷过程中受化学反应控制,升高温度、减小矿粒均可提高反应速率.在实际浸出时,由于细菌对温度的要求较高,在保证浸出温度适宜的情况下,可适当减小矿石粒度以加快反应速率,提高脱磷率.  相似文献   

5.
紫金山铜矿细菌浸出研究   总被引:4,自引:0,他引:4  
介绍了紫金山铜矿细菌浸出试验研究的内容及结果。研究内容包括菌种的采集、分离、驯化、鉴定以及基因工程菌的改良,主要矿物浸出机理,单矿物的浸出试验,矿石浸铜的小型试验及柱浸扩大试验,浮选精矿浸铜试验和脉石组分对细菌浸铜的影响。结果表明,分离的目的菌株是氧化亚铁硫杆菌和氧化硫硫杆菌的混合菌,该菌株对紫金山铜矿具有良好的浸出效果,小型试验铜浸出率达到88.29%,柱浸扩大试验矿石粒度为-15mm,浸出时间  相似文献   

6.
金川低品位镍矿资源微生物浸出研究   总被引:10,自引:0,他引:10  
温建康  阮仁满  孙雪南 《矿冶》2002,11(1):55-58
金川低品位镍矿资源———贫矿和尾矿具有良好的生物可浸性 ,尾矿比贫矿更容易浸出。采用以氧化亚铁硫杆菌为主的混合浸矿菌株浸出金川尾矿 ,镍、铜、钴浸出率分别可达 87 84%、84 0 5 %和86 35 % ;贫矿细菌浸出 ,镍、铜、钴的浸出率分别达到 88 78%、47 68%和 65 65 %。针对金川矿石碱性脉石多 ,导致普通T·f菌浸出过程中耗酸量大、pH值不稳的特点 ,采用诱变技术选育了耐高pH值的浸矿菌株。该菌株应用于金川尾矿和贫矿浸出 ,浸出指标接近普通T·f菌浸出指标 ,为金川低品位资源生物浸出工业化应用奠定了良好的基础  相似文献   

7.
吉林某铜钴镍多金属硫化矿品位低,成分复杂,对其开展了生物摇瓶浸出与柱浸试验研究,结果表明:浸出温度对铜钴镍浸出率的影响显著,生物摇瓶浸出的适宜条件为矿浆浓度15%,初始pH值1.5,浸出温度30℃,不添加Fe~(2+);酸浸预处理7d后进行生物柱浸试验,矿石粒度为-10 mm,接菌浸出60 d后,铜、钴、镍的浸出率分别为7.32%、27.47%和27.08%,与矿石粒度-20 mm无菌浸出的条件相比,钴镍浸出率提高了近8个百分点,说明细粒有菌条件有利于金属的浸出;分析浸矿菌群组成,优势菌主要为嗜酸硫杆菌属(Acidithiobacillus)和钩端螺旋菌属(Leptospirillum)。  相似文献   

8.
一株氧化亚铁硫杆菌的系统进化分析 及其浸矿效果研究   总被引:2,自引:0,他引:2  
从低品位黄铜矿浸矿菌液中分离到14株嗜酸、亚铁离子氧化菌株, 并对菌株进行了Fe2+氧化率及其对低品位黄铜矿铜浸出率的测定。实验表明, YK12菌株的氧化活性最高, 对该菌株进行系统进化分析表明, 该菌株与分离自德国某废铀矿堆中的Acidithiobacillus ferrooxidans D2菌株(嗜酸氧化亚铁硫杆菌)相似性最高, 可鉴定为嗜酸氧化亚铁硫杆菌菌株(Acidithiobacillus ferrooxidans)。  相似文献   

9.
高砷原生硫化铜矿细菌浸出试验研究   总被引:5,自引:2,他引:3  
采用中温嗜酸氧化亚铁硫杆菌、喜温嗜酸硫杆菌和高温Ferroplasma属古菌对高砷原生硫化铜矿进行了细菌浸出试验研究。研究结果表明, 喜温嗜酸硫杆菌对高砷原生硫化铜矿的浸出效果比中温嗜酸氧化亚铁硫杆菌好。中温菌对砷的耐受性比高温菌高。在高温菌浸出过程中, 铜优先于砷溶解, 砷主要留在浸渣中; 细菌接种量对高砷原生硫化铜矿的浸出有一定的影响, 接种量为10%时浸出效果最好。提高温度有利于初始阶段铜的浸出, 随着浸出的进行, 温度的影响逐渐降低, 细菌作用占主导作用。驯化高砷耐受能力的高温菌将成为进一步的研究目标。  相似文献   

10.
文中介绍了多组分硫化矿经混合浮选得出的精矿以不同周期适应性培养后的氧化亚铁硫杆菌预处理后氰化浸出金、银的结果,研究了细菌适应性培养、更换部分浸出液与硫化物的细菌浸出速率、浸出程度及下步金银氰化浸出率的关系。实验所用矿石为硫化矿,金银在基岩中呈细微浸染状和包裹形式分布,大部分贵金属与铅的硫化矿物伴生,少部分与锌的硫化矿物伴生,原矿含金4.5克/吨、银124.7  相似文献   

11.
以难处理混合铜矿为研究对象,该矿石铜氧化率和结合率分别为76.92%和39.16%,因为结合率较高,所以极难选别,单一的浮选法或者浸出法无法最大化地回收铜资源,采用浮选-浸出选冶联合法可以对铜资源高效回收。浮选作业采用一粗一扫一精的闭路试验流程,当磨矿细度为-74μm占80%,硫化钠用量为400g/t,丁基黄药用量为500g/t时,获得铜品位为29.37%,铜回收率为32.22%的铜精矿。浮选尾矿中剩余的游离氧化铜和难选的结合氧化铜采用加温浸出法进行回收,当浸出温度为70℃,液固比为2∶1,浓硫酸用量为60kg/t,浸出时间为4h时,铜浸出率为82.37%。采用浮选-浸出选冶联合法可使铜综合回收率达到88.05%,实现了难处理混合铜矿的高效回收,提高了资源利用率。  相似文献   

12.
以活性炭、Ag+及Fe2+组合为催化剂,研究了催化条件下永平铜矿低品位原生硫化铜矿细菌槽浸的效果。研究结果表明,催化条件下低品位原生硫化铜矿细菌槽浸的效果良好,但充气量对浸出有较大的影响,其中25 mL/s的充气量最有利于铜的浸出,在浸出455 h后,铜的浸出率可达47.1%。酸化液可以代替9K+S培养液作为溶浸剂,用酸化液作溶浸剂时,在浸出335 h后,铜的浸出率可达41.8%,比9K+S培养液作溶浸剂高出1.7个百分点以上。  相似文献   

13.
永平低品位原生硫化铜矿石细菌浸出条件研究   总被引:5,自引:5,他引:5  
张卫民  谷士飞  于荣 《金属矿山》2006,(2):41-44,66
为回收利用永平铜矿废矿石中的低品位原生硫化铜矿资源,通过摇瓶实验,研究了接种量、初始Fe^2+浓度、矿浆酸度、矿石粒度和矿浆浓度等条件对永平低品位原生硫化铜矿石细菌浸出的影响。研究结果表明:有利于铜浸出的条件是接种量20%,初始Fe^2+浓度0g/L,初始pH值1.2,浸出过程控制pH值小于1.50,矿石粒度5mm,矿浆浓度20%~25%;溶液中三价铁含量过高或产生铁的沉淀都会直接影响细菌的浸矿效果;尽管浸矿细菌能很好地适应浸矿环境,但铜的浸出速度偏慢、浸出率偏低,有待于采取强化浸出措施。  相似文献   

14.
含砷硫化铜精矿的细菌浸出研究   总被引:12,自引:5,他引:12  
细菌浸出金属因其投资小、成本低、污染轻,适合处理低品位和难处理矿石,已在次生硫化铜矿石提铜中作为首选工艺。介绍了我国某含砷低品位硫化铜矿浮选精矿的细菌浸出试验研究结果,通过选育优良浸矿菌种,可以高效地直接提取某铜精矿中的铜,铜浸出率达到85.52%。  相似文献   

15.
针对某铜矿山氧化铜矿石含泥量高的现状,对该氧化铜矿石的类型和矿物组成进行了分析,对3种粒级(-0.295,0.295~1,-1mm)的矿样进行了酸法浸出实验。实验结果表明,其中0.295~1mm粒级的矿石可用槽浸工艺进行浸出。矿石渗透性良好,铜的浸出率为70.27%,铁浸出率为2.22%,酸耗为10.06t/t铜,具有较好的可浸性。  相似文献   

16.
中温嗜酸硫杆菌浸出低品位硫化铜矿   总被引:2,自引:1,他引:1  
研究了中温嗜酸硫杆菌的生长条件, 对黄铜矿进行了细菌浸出试验研究。研究表明, 中温嗜酸硫杆菌最适宜的生长条件为: pH值为2, 温度为30±1 ℃, 此条件下细菌浓度为2.24×107个/mL。接种量、矿浆浓度对黄铜矿中铜的浸出率有显著的影响, 随着接种量的增加, 铜的浸出率提高。在相同浸出时间内, 矿浆浓度5%左右时, 黄铜矿中铜的浸出率最高。低品位硫化铜矿柱浸试验结果表明: 细菌浸出75 d, 铜的浸出率为45%。  相似文献   

17.
为减少泥质矿物对孔雀石浮选的影响,采用预先脱泥浮选工艺,对某高氧化率、含泥量大的难处理氧化铜矿石进行试验研究,对于预先脱泥浮选工艺,细泥脱除率为9.42%的情况下,能获得综合铜精矿品位为27.16%,脱除的细泥作为产品转入湿法浸出作业,铜的浸出率能达到94.30%,折算成全流程的铜的回收率为12.02%,所以全流程的铜综合回收率为85.46%,与原矿直接浮选工艺对比,浮选综合铜精矿品位提高了3.88%,铜综合回收率提高了6.32%,充分说明了预先脱泥浮选-矿泥浸出的选冶联合工艺的效果。而且原矿经过旋流器预先脱泥处理后,在保证铜精矿回收率的同时,包括氟硅酸钠、硫化钠和捕收剂在用量上都有较大的降低空间,充分说明了预先脱泥浮选工艺的效果。  相似文献   

18.
西藏某氧化铜矿石铜品位为4.32%,矿石性质复杂,氧化率高,易浮泥质碱性脉石矿物含量高。针对该矿石性质及选矿厂所在特殊地理环境的特点,对矿石进行了硫化浮选选铜试验。结果表明,矿石在磨矿细度为-0.074 mm占80%、以硫化钠+硫酸铵为调整剂,戊基黄药为铜矿物捕收剂的情况下,采用2粗3精3扫、中矿顺序返回流程处理,最终获得了铜品位为19.54%、铜回收率为79.21%的铜精矿。该工艺具有高效、环保的特点。  相似文献   

19.
某硫化铜矿石中的金属矿物主要为斑铜矿、黄铜矿及辉铜矿,黄铁矿和硫铜钴矿微量,脉石矿物主要为石英。矿石中铜矿物嵌布粒度极不均匀,少部分铜矿物嵌布粒度较粗,主要为细—微细粒嵌布的铜矿物,细者甚至小于10μm。为确定该矿石的高效选矿工艺进行了选矿试验。结果表明:铜品位为3.85%的矿石在磨矿细度为-53μm占80%的情况下,采用2粗2精3扫流程进行粗粒开路浮选,粗粒浮选中矿集中再磨至-10μm占80%的情况下,采用1粗1精流程进行细粒开路浮选,可获得铜品位为41.86%、回收率为59.01%的粗粒精矿,铜品位为33.27%、回收率为26.43%的细粒精矿,总精矿品位为38.76%、回收率为85.45%。采用粗细分级分选开路浮选流程回收矿石中的硫化铜,既解决了含铜粗粒连生体在流程中的循环,又发挥了粗细分选优势,还避免了微细粒中矿返回对流程的影响,是粒度极不均匀嵌布的硫化铜矿物的高效回收工艺。高品位微细粒中矿中的铜将采用生物氧化浸出工艺回收有利于提高总铜回收率。  相似文献   

20.
刘方华 《金属矿山》2019,48(11):73-78
国外某沉积岩型硫氧混合铜矿石铜品位为2.96%,为确定该矿石的合理开发利用工艺,在工艺矿物学研究的基础上进行了选矿试验研究。结果表明:①矿石中的主要铜矿物有辉铜矿、赤铜矿、孔雀石、硅孔雀石,主要脉石矿物有石英、方解石、白云石;辉铜矿、赤铜矿的嵌布粒度一般在0.02~0.30 mm,孔雀石、硅孔雀石的嵌布粒度主要为0.02~1.20 mm;硫化铜占总铜的60.14%,氧化铜占39.86%。②原矿在磨矿细度为-0.074 mm占73.60%的情况下,先以丁基黄药+乙基黄药为组合捕收剂采用2粗2精1扫流程浮选硫化铜矿物,再以硫化钠为硫化剂、丁基黄药+烷基羟肟酸为捕收剂采用1粗3精2扫流程浮选氧化铜矿物,获得了Cu品位为46.92%、回收率为71.57%的硫化铜精矿和Cu品位为29.23%、回收率为16.08%的氧化铜精矿,总精矿Cu品位为42.17%、回收率为87.65%,选别指标较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号