首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过Gleeble-3800热模拟机,研究了一种胀断连杆用中碳非调质钢的连续冷却转变组织变化规律,分析了冷却速度对转变组织和显微硬度的影响.结果表明,当冷却速度为0.1~3℃/s时,组织为铁素体+珠光体,当冷却速度大于5℃/s时,开始发生贝氏体转变,随着冷却速度提高,贝氏体含量增多,并在速度大于15℃/s时发生马氏体转变.实验钢的显微硬度随着冷却速度的提高而增加.  相似文献   

2.
以NM400级别贝氏体/马氏体双相耐磨钢为研究对象,利用热模拟实验、金相组织及硬度检测等方法,研究了实验钢种在变形后不同冷却速度下显微组织及硬度的演变规律,并绘制了动态连续冷却转变(CCT)曲线。结果表明,设计的贝氏体/马氏体双相耐磨钢具有良好的淬透性。连续冷却过程中,冷却速度介于0. 1~1℃/s时,显微组织中出现了先共析铁素体相;随着冷却速度的增加,先共析铁素体逐渐减少;当冷却速度为1~10℃/s时,显微组织以贝氏体为主;冷却速度 20℃/s后,显微组织基本为马氏体。随着冷却速度的增加,试样硬度值呈升高趋势,但后期硬度值变化不大。综合考虑,生产中为了得到以贝氏体组织为主的双相耐磨钢,轧制后冷却速度应控制在2~10℃/s。本研究结果可以为贝氏体/马氏体双相耐磨钢轧后冷却工艺的制定提供参考。  相似文献   

3.
采用Gleeble-3500热/力模拟试验机、金相显微镜和显微硬度计研究了V-N微合金钢的连续冷却组织转变规律,分析了冷速对组织及性能的影响.试验结果表明:V-N微合金钢过冷奥氏体连续冷却过程中发生了铁素体析出、珠光体转变、贝氏体转变和马氏体转变;冷却速度影响铁素体分布和晶粒大小;珠光体相变结束临界冷速为7.0℃/s、贝氏体相变开始临界冷速为3.0℃/s、马氏体相变开始临界冷速为15℃/s.  相似文献   

4.
摘要:通过连续冷却实验研究了Nb Ti微碳深冲双相钢在不同冷却速率下的显微组织变化规律。并结合显微组织、热膨胀曲线以及实验钢的硬度值绘制出实验钢的CCT曲线。结果表明,实验钢的CCT曲线由铁素体、珠光体与贝氏体区组成,其中铁素体和贝氏体的区域较大,覆盖冷却速度范围较广。实验冷却速率下未出现马氏体组织。在05~1℃/s的慢冷速下,组织由铁素体和珠光体组成;当冷速增加至3℃/s时,贝氏体开始出现,珠光体消失。当冷速在5~10℃/s范围内时,获得铁素体+贝氏体双相组织;当冷速大于10℃/s时,铁素体相变消失,此时为纯贝氏体转变。热处理过程中若想获得一定量的马氏体组织,退火温度宜设置在820~900℃双相区较低温度范围,使合金元素充分富集于少量奥氏体中,在随后冷却过程中此奥氏体转变为马氏体组织。  相似文献   

5.
通过连续冷却实验研究了Nb-Ti微碳深冲双相钢在不同冷却速率下的显微组织变化规律。并结合显微组织、热膨胀曲线以及实验钢的硬度值绘制出实验钢的CCT曲线。结果表明,实验钢的CCT曲线由铁素体、珠光体与贝氏体区组成,其中铁素体和贝氏体的区域较大,覆盖冷却速度范围较广。实验冷却速率下未出现马氏体组织。在0.5~1℃/s的慢冷速下,组织由铁素体和珠光体组成;当冷速增加至3℃/s时,贝氏体开始出现,珠光体消失。当冷速在5~10℃/s范围内时,获得铁素体+贝氏体双相组织;当冷速大于10℃/s时,铁素体相变消失,此时为纯贝氏体转变。热处理过程中若想获得一定量的马氏体组织,退火温度宜设置在820~900℃双相区较低温度范围,使合金元素充分富集于少量奥氏体中,在随后冷却过程中此奥氏体转变为马氏体组织。  相似文献   

6.
文章以低碳中锰钢为研究对象,利用FORMASTOR-F全自动相变仪,测定了试验钢连续冷却转变的CCT曲线.结果表明:冷却速度为0.1~0.5℃/s时,室温组织为先共析铁素体+珠光体;冷却速度为1~2℃/s时,出现粒状贝氏体,室温组织为铁素体+珠光体+粒状贝氏体;当冷速为5~10℃/s时,贝氏体逐渐向马氏体转变,马氏体不断增加,室温下为马氏体+贝氏体混合组织;当冷速大于10.0℃/s,室温下为马氏体组织.为热处理工艺的制定提供了参考依据.  相似文献   

7.
王凤琪  徐光  陈静  补丛华  邹航 《特殊钢》2012,33(2):68-70
采用热膨胀法和金相法,通过Gleeble-1500热模拟试验机测定C-Mn-Si系低碳(/%:0.11C、1.15Si、1.85Mn、0.032Al、0.003 Ti、0.002 4N)和中碳(/%:0.35C、1.11Si、1.82Mn、0.041Al、0.002 Ti、0.004 2N)贝氏体钢在0.5~30℃/s的冷却速度下连续冷却时的膨胀曲线,确定相变点,并结合显微组织,借助Origin软件分别绘制出两种钢的连续冷却转变(CCT)曲线。结果表明,0.11%C钢当冷却速度≤1℃/s时获得铁素体+贝氏体+马氏体组织,冷却速度≥2℃/s时为贝氏体+马氏体组织,0.35%C钢冷却速度≥0.5℃/s即可获得贝氏体+马氏体组织;随碳含量增加,贝氏体和马氏体转变温度均降低。  相似文献   

8.
采用热膨胀法并结合金相组织分析及硬度变化来测定12Cr2Mo1R钢变形奥氏体的连续冷却转变温度,研究了钢的相变规律,结果表明,12Cr2Mo1R钢未变形奥氏体连续冷却转变,冷却速度<0.27 ℃/s时,组织为贝氏体+铁素体+珠光体;在0.27~8.4 ℃/s之间时,组织为贝氏体;>8.4 ℃/s时,组织为马氏体+贝氏体。变形奥氏体连续冷却转变,冷却速度<5 ℃/s时,组织为铁素体+珠光体+贝氏体;在5~20 ℃/s之间时,主要为贝氏体组织;>20 ℃/s时,得到的组织为马氏体+贝氏体。形变加速了奥氏体连续相变,使连续冷却相变温度提高。钢中Cr、Mo等合金元素,提高了过冷奥氏体的稳定性,使连续转变过程中出现了亚稳奥氏体区,提高了贝氏体的淬透性。  相似文献   

9.
通过测定20Cr H钢的CCT曲线,以及不同冷速下连续冷却转变产物的显微组织和对应的硬度值,研究冷却速度对组织及硬度的影响,为该钢热处理工艺的制定提供依据。结果表明:冷速为1000℃/h,转变产物为共析铁素体+珠光体;当冷速增加为250℃/min时,出现了贝氏体组织;而当冷速为20℃/s时,产物为贝氏体+马氏体组织;冷速为50℃/s时,转变产物为完全马氏体组织。  相似文献   

10.
在膨胀仪上测定了一种V、Nb微合金化高强钢筋的临界点Ac1、Ac3、Ar1和Ar3,获得了该钢在不同冷却速度下连续冷却时的膨胀曲线。采用膨胀法结合金相-硬度法,获得了试验钢的连续冷却转变曲线(CCT曲线),并研究了冷却速度对该钢组织及力学性能的影响。结果显示,当冷却速度为0. 1~2℃/s时,显微组织由铁素体和珠光体组成,显微硬度为193~250 HV30;冷却速度为3~5℃/s时,显微组织由铁素体、珠光体和贝氏体组成,硬度为268~287 HV30;冷却速度为5~30℃/s时,显微组织由铁素体、贝氏体和马氏体组成,硬度为287~424 HV30。对试验钢来说,控冷速度为0. 5~3℃/s之间最为理想,本文研究结果可作为高强度钢筋冷却过程的控制依据。  相似文献   

11.
含铌低碳钢的连续冷却转变   总被引:3,自引:0,他引:3  
用Gleeble-1500热力模拟实验机研究了含铌低碳钢和普通低碳钢经不同变形条件下连续冷却过程的相变规律,利用热膨胀法结合金相法得到了连续冷却转变曲线,分析比较了它们的组织演变规律,测定了含铌低碳钢在不同温度和不同变形量下硬度的变化.研究结果表明,铌的加入使铁素体转变开始温度降低,使贝氏体转变温度降低,铌对贝氏体的转变产生了抑制作用.同时铌的加入扩大了产生贝氏体的冷速范围,含铌低碳钢中贝氏体的量显著增多.含铌钢在950℃变形时贝氏体板条长度和宽度比850℃变形时大.对含铌低碳钢,在冷却速度低于1℃/s时,由于生成大量的铁素体,导致了硬度降低;而冷却速度大于1℃/s时,基体中出现了贝氏体使硬度突然增加.  相似文献   

12.
采用热力模拟试验机、光学显微镜、显微硬度计研究了耐蚀钢12CuCrNiV在不同冷却速率下的连续冷却组织转变规律,并绘制其CCT曲线,同时研究了形变温度和冷却速度对耐蚀钢热变形后的组织和硬度的影响规律。结果表明:连续冷却转变情况下,耐腐蚀钢在冷速小于15℃/s时,有铁素体转变;冷速小于1℃/s时,有珠光体转变;冷速在0.5~20℃/s之间时,有贝氏体转变。控制冷速在5~15℃/s可得到铁素体和贝氏体复相组织。随变形温度的降低,试验钢形变过程中形变诱导铁素体相变现象显著,且伴随有M/A岛生成;随冷却速度的增高,形变诱导相变现象减弱,M/A岛数量减少。与连续冷却试验相比较,形变诱导析出现象明显,其硬度增量为40~50HV,形变可使试验钢的析出向更高冷速移动。  相似文献   

13.
研究低锰钛微合金化Q355B钢奥氏体连续冷却过程中的转变曲线及转变产物的组织,为轧钢工艺调整提供依据,得到不同冷却速度下的CCT曲线和相应的金相组织,确定Q355B的AC1=733℃,AC3=990℃。当冷却速度为3℃/s时,转变产物为魏氏组织+铁素体+珠光体+少量粒状贝氏体,此时由于冷却速度慢,晶粒粗大,导致生成魏氏组织;当冷却速度为5、10℃/s时转变产物为铁素体+珠光体+粒状贝氏体;当冷却速度为15℃/s时,珠光体基本消失,转变产物为铁素体+粒状贝氏体+上贝氏体;当冷却速度为20、25℃/s时转变产物为铁素体+粒状贝氏体+上贝氏体;当冷却速度为30℃/s时,出现马氏体组织,转变产物为铁素体+上贝氏体+少量马氏体。  相似文献   

14.
采用Gleble-1500热模拟机测定了15MnVB钢在0.05~20℃/s冷速下连续冷却转变的膨胀曲线,结合光学显微镜的微观组织观察,测绘了该钢热变形奥氏体连续冷却转变过程中的动态CCT曲线;研究了其连续冷却转变产物的组织形态和硬度。实验结果表明,15MnVB钢在0.05-20℃/s冷却速率下的组织主要由铁素体+珠光体、铁素体+珠光体+贝氏体、铁素体+珠光体+贝氏体+马氏体、贝氏体+马氏体组成。  相似文献   

15.
利用膨胀仪测定了14CrlMoR钢(/%:0.01C,0.66Si,0.80Mn,0.006P,0.003S,1.72Cr,0.31Mo,0.01Nb)的临界点及连续冷却转变曲线并研究了冷却速度对试验钢的组织及显微硬度的影响。结果表明,当冷却速度为0.1~1℃/s时,试验钢的转变组织为铁素体和珠光体;2~5℃/s时,试验钢得到铁素体、珠光体以及少量粒状贝氏体的混合组织;10℃/s时,试验钢组织为铁素体和粒状贝氏体;15~20℃/s时为板条贝氏体组织;25~50℃/s时,该钢得到板条贝氏体和马氏体的混合组织。  相似文献   

16.
采用Gleble-1500热模拟机测定了15MnVB钢在0.05~20℃/s冷速下连续冷却转变的膨胀曲线,结合光学显微镜的微观组织观察,测绘了该钢热变形奥氏体连续冷却转变过程中的动态CCT曲线;研究了其连续冷却转变产物的组织形态和硬度。实验结果表明,15MnVB钢在0.05-20℃/s冷却速率下的组织主要由铁素体+珠光体、铁素体+珠光体+贝氏体、铁素体+珠光体+贝氏体+马氏体、贝氏体+马氏体组成。  相似文献   

17.
在实验室利用Gleeble-3500热模拟试验机对3种Nb、V微合金化Q355E热轧H型钢进行了连续冷却转变规律测试,研究了冷却速度对试验钢组织与硬度的影响。结果表明:在冷速为0.5℃/s时,组织中开始出现贝氏体;冷速大于7℃/s时,珠光体转变即终止。在中等冷速下,Nb的加入促进了贝氏体的形成,抑制了铁素体与珠光体的形核;并且Nb的加入使铁素体转变区右移。Cr的加入降低了较高冷速下铁素体与珠光体相变点,并促进了高冷速下马氏体的形成。由于受V析出的影响,含V试验钢在冷速为1℃/s时其硬度曲线有一个"波谷"。3种试验钢的冷速在0.5~3℃/s之间时,试验钢可获得强韧性较好的细小准多边形铁素体、少量珠光体与贝氏体的复合组织。  相似文献   

18.
利用Gleeble-3800热模拟机研究51CrV4弹簧钢过冷奥氏体连续转变规律,采用热膨胀法测定其相变临界点,同时测定51CrV4钢过冷奥氏体在不同冷却速度下连续转变时的膨胀曲线,绘制其静态连续冷却转变(CCT)曲线.结合金相-显微硬度法,分析不同冷却速度对51CrV4钢组织性能的影响.结果表明:冷却速度为0.5℃/s 时,冷却转变的产物为铁素体和珠光体;当冷速增加,达到1℃/s 后,贝氏体开始生成;马氏体转变冷速区间为2~30℃/s;当冷却速度超过12℃/s后,冷却产物只有马氏体.  相似文献   

19.
利用MMS-200热模拟试验机研究了NM400耐磨钢奥氏体化后连续冷却转变规律,当冷却速度1℃/s时,组织为先共析铁素体和粒状贝氏体;1~3℃/s时,B+F;3~5℃/s时,针状贝氏体和少量M组织;5~10℃/s时,M+B;10℃/s以上时,组织为板条马氏体(含少量RA)。在CCT曲线中,相变区域主要分为3部分:铁素体区、贝氏体区、马氏体区。随冷却速度的增加,晶粒随之变细,合金元素使CCT曲线右移,降低了NM400耐磨钢的临界冷却速度。  相似文献   

20.
采用MMS-300热模拟机测定了C-Si-Mn-Cr-Nb系980 MPa级高强度汽车双相钢的动态CCT曲线。实验结果显示:冷却速率在0.1~5℃/s范围内显微组织主要为铁素体+贝氏体;冷却速率达到5℃/s时铁素体转变结束,奥氏体全部转变为贝氏体;当冷却速率达到40℃/s时开始发生马氏体转变,显微硬度和抗拉强度均随冷却速率的增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号