首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
张鹏  曾利辉  高武  姚琪 《工业催化》2015,23(7):573-575
采用浸渍法制备活性炭负载Ni、Ru、Rh单金属及Ni-Ru、Ru-Rh双金属催化剂,考察反应温度、反应压力和m(催化剂)∶m(间苯二甲腈)对间苯二甲腈加氢制备间苯二甲胺的影响。结果表明,Ni-Ru/C催化活性高于Ru/C和Ni/C,通过分步浸渍法制备的Ni-Ru/C催化活性优于一步浸渍法。以甲醇和甲苯为混合溶剂,在m(催化剂)∶m(间苯二甲腈)=1∶20、反应温度120℃、反应压力4.0 MPa和1 000 r·min-1条件下,无需加入碱性抑制剂,间苯二甲胺收率最高可达97.78%。  相似文献   

2.
采用溶胶凝胶法制备了超细Cu/Ni混合催化剂,并用于糠醛液相加氢制2-甲基四氢呋喃(2-MeTHF)反应。考察了Cu/Ni摩尔比、Na2CO3溶液浓度等对催化剂制备的影响,及反应压力、反应温度、反应时间等对糠醛转化率和2-MeTHF选择性的影响。结果表明,适宜催化剂制备条件为n(Cu)∶n(Ni)=1∶1,Na2CO3溶液浓度为1.0mol/L;适宜的反应条件为反应压力8 MPa,反应时间3.5 h,反应温度180℃;产品经气相色谱检测分析,糠醛的转化率为100%,2-MeTHF的选择性为64.52%。  相似文献   

3.
Ni/γ-Al_2O_3催化剂上甲烷水蒸气重整制合成气   总被引:1,自引:0,他引:1  
采用固定床装置,考察了负载型Ni系列催化剂及反应条件对Ni/γ-Al2O3催化剂的甲烷水蒸气重整反应的影响,并利用XRD和TPR技术对催化剂样品进行表征。结果表明,在空速1 800 h-1,n(H2O)∶n(CH4)∶n(N2)=2.86∶1∶3.28,反应温度700℃的条件下,催化剂Ni含量在9%时反应性能最佳,可得到94.3%的CH4转化率和64.9%的CO选择性。  相似文献   

4.
以天然海泡石为原料,Fe SO4·4H2O和Fe Cl3·6H2O为改性剂,制备了磁改性海泡石并用于处理含Ni2+废水。考察了吸附时间、反应温度、p H和Ni2+初始质量浓度对磁改性海泡石对Ni2+吸附量的影响。结果显示,磁改性海泡石对Ni2+的吸附量随吸附时间、温度、p H与Ni2+初始质量浓度的增加而提高,吸附行为与二级动力学方程和Langmuir等温吸附模型拟合较好。对于Ni2+质量浓度为50 mg/L的废水,在25°C、p H=5的条件下,0.5 g磁改性海泡石对Ni2+的吸附量为2.95 mg/g。通过正交试验优选出适用于处理Ni2+质量浓度为68.48 mg/L的某镀镍车间漂洗废水的最佳条件为:温度65°C,p H 4.2,吸附剂投加量1.5 g,时间为1.5 h。最终Ni2+去除率为99.65%,出水Ni2+质量浓度为0.24 mg/L,远低于GB 21900–2008中表2规定的排放限值(0.5 mg/L)。  相似文献   

5.
采用分步沉淀法制备了不同Cu/Ni摩尔比的Cu Fe Ni/Zn O催化剂,并采用X射线衍射、N2物理吸附等手段对催化剂的结构进行表征。考察了其催化CO加氢合成低碳混合醇的反应性能,同时探究了反应温度及反应压力对催化剂催化性能的影响。结果表明,少量Ni助剂的加入可以增加催化剂比表面积,提高Cu O的分散度,促进碳链增长,提高液相产物中C+2醇的选择性。当Cu/Ni摩尔比为7∶1时,催化剂的比表面积达到最大(85.09 m2/g),醇的选择性较高,C+2醇与甲醇的质量比最大为0.67,C+2醇在液相产物中的质量分数最高。在空速为5 000 h-1、V(H2)/V(CO)=2时以Cu7Fe Ni1.0/Zn O催化剂合成低碳醇中,当反应温度为340℃、反应压力为6 MPa时,更有利于C+2醇生成,尤其是异丙醇的选择性较高。  相似文献   

6.
前期工作表明Ni/Si3N4催化剂在甲烷部分氧化反应中有较好的催化活性和很强的抗积炭能力。在前期工作的基础上考察了镍负载量和焙烧温度对Ni/Si3N4催化剂在甲烷部分氧化中催化性能的影响,并采用XRD、TPR、XPS等技术对催化剂进行了表征。结果表明,镍负载量和焙烧温度影响催化剂活性组分的表面分布和晶粒尺寸,并进一步影响催化剂的反应性能。在800℃反应条件下,活性组分负载量与CH4转化率之间的关系为:C-10>C-15>C-5>C-1;而焙烧温度与CH4转化率大小顺序为:S(400)> S(600)>S(800)。  相似文献   

7.
以H2SO4为催化剂、硅胶为吸水剂(S)进行甲基丙烯酸(MA)和Span 80的酯化反应,合成反应性乳化剂Span 80甲基丙烯酸酯。考察了催化剂用量、反应温度、吸水剂用量等反应条件对酯化反应酯化率的影响,确定了较理想的合成工艺条件:n(H2SO4)∶n(MA)∶n(Span 80)=0.31∶1∶1、m(S)∶m(MA)=0.92∶1、酯化温度110℃。研究了该酯化反应动力学,确定该酯化反应为二级反应,表观反应活化能为28.82 kJ/mol。  相似文献   

8.
以H2SO4为催化剂、硅胶为吸水剂(S)进行丙烯酸(AA)和Span80的酯化反应,合成了聚合型乳化剂Span80丙烯酸酯。考察了催化剂用量、反应温度、吸水剂用量等反应条件对酯化反应酯化率的影响,确定了较理想的合成工艺条件:n(H2SO4)∶n(AA)∶n(Span80)=0.28∶1∶1、m(S)∶m(AA)=1.1∶1、酯化温度110℃。研究了该酯化反应动力学,确定该酯化反应为二级反应,表观反应活化能为57.83 kJ/mol。  相似文献   

9.
以二甲苯作生物质焦油的模拟化合物,用凹凸棒石负载镍作催化剂来研究二甲苯的催化重整反应.研究了温度、空速(载气流速与催化剂体积的比值)、Ni的负载量、水碳比[水蒸气与二甲苯中碳原子的摩尔比,n(S)/n(C)]对催化活性的影响并考察了催化剂的寿命.结果表明:当反应条件为n(S)/n(C)=6.6,空速为856h-1,Ni...  相似文献   

10.
以正辛醇为原料,考察了催化剂载体种类、Cu O-Ni O负载量和n(Cu O)∶n(Ni O)摩尔比对Guerbet十六醇催化合成反应的影响,在此基础上,以优选的30%Cu O-Ni O/Ca CO3(Cu O-Ni O负载量,即Cu O与Ni O所占质量百分数,为30%;n(Cu O)∶n(Ni O)=1∶2)为催化剂,进一步优化了反应条件(反应温度、反应时间和催化剂用量)。结果表明,Cu O-Ni O/Ca CO3-KOH催化体系能有效地催化正辛醇合成Guerbet十六醇,在Cu O-Ni O/Ca CO3、KOH投料量分别为0.10%和3.0%(催化剂投料量为催化剂质量与正辛醇质量百分比)时,240℃下反应1 h,Guerbet十六醇的收率和选择性分别为83.5%和87.3%。  相似文献   

11.
张利存  蒋文伟 《应用化工》2014,(3):476-478,482
以氧氯化锆和过硫酸铵为原料,制备S2O82-/ZrO2催化剂,并在其催化作用下,对葡萄糖和正丁醇发生糖苷反应合成丁基糖苷的体系进行了研究。考察了反应温度、催化剂/葡萄糖质量比、反应时间、糖醇摩尔比等反应条件对葡萄糖转化率的影响。结果表明,催化剂的最佳制备条件为:(NH4)2S2O8浓度为0.5 mol/L,焙烧温度为600℃,焙烧时间4 h;合成丁基糖苷的最佳反应条件为:葡萄糖20 g,m(催化剂)∶m(葡萄糖)=5∶100,n(葡萄糖)∶n(正丁醇)=1∶6,110℃回流反应4 h,在此条件下,葡萄糖的转化率可达90.4%。  相似文献   

12.
高文莉  辛忠 《化工学报》2022,73(1):241-254
为了提高Ni/SBA-16催化剂在低温下CO甲烷化中的活性,通过引入Fe助剂制备了Ni-Fe/SBA-16双金属催化剂。对催化剂进行XPS、XRD、HRTEM及EDS-mapping表征的结果表明,Fe的加入与Ni形成了Ni3Fe合金,减小了金属颗粒尺寸,使得还原后金属颗粒平均粒径从60 nm降低到30 nm左右。同时H2-TPR的结果表明,Ni3Fe合金的形成增强了金属Ni与载体之间的相互作用,从而能够减弱Ni颗粒在还原过程及反应过程中的团聚。最后,由CO-TPD和H2-TPD的测试结果可知,Ni3Fe合金的形成促进了催化剂对反应气体CO和H2的解离,从而提高了催化剂在低温下的CO甲烷化活性。当空速为150000 h-1、压力为0.1 MPa、V(H2)∶V(CO)∶V(N2)=3∶1∶1时,CO最低完全转化温度可以从300°C降低到250°C,同时CH4的选择性保持在90%。  相似文献   

13.
以天然海泡石为原料,以盐酸为改性剂,制备了盐酸改性海泡石并用于含Ni2+废水的处理。以盐酸改性海泡石对Ni2+吸附量为评价指标,考察了吸附时间、反应温度、p H和Ni2+初始质量浓度对实验结果的影响。实验发现,在一定条件下,盐酸改性海泡石对Ni2+的吸附量随着吸附时间、温度、p H与Ni2+初始质量浓度的增加而增加。盐酸改性海泡石对Ni2+的吸附与二级动力学方程(K2=0.627 7,Qe=2.59)和Langmuir等温吸附模型(Qmax=3.34,KL=0.022 6)能够较好拟合。对质量浓度为50 mg/L的含Ni2+废水,在25℃,p H为5,10 g/L盐酸改性海泡石投加量的条件下,所制备的盐酸改性海泡石对Ni2+的饱和吸附量为2.40 mg/g。考察了盐酸改性海泡石对ρ(Ni2+)为68.48 mg/L的某电镀生产废水的处理效果,其最佳实验θ为65℃,p H为6,t为30 min,投加量为30 g/L盐酸改性海泡石,此条件下Ni2+去除率为98.39%。  相似文献   

14.
引入镍离子制备出新型固体超强酸Ni/SO42--SnO2,以该固体酸催化α-蒎烯水合反应制备α-松油醇,考察影响水合反应的因素,得到水合反应最适宜的条件为:n(α-蒎烯)∶n(一氯乙酸)∶n(H2O)=1∶1∶2,反应温度70°C,反应时间10h,催化剂用量为α-蒎烯质量的6%。在该反应条件下,α-蒎烯转化率为100%,α-松油醇选择性为73.3%;与未添加Ni的固体超强酸SO24-/SnO2相比表明,Ni的引入能明显提高催化剂在水合反应中的活性和选择性。  相似文献   

15.
陈献  乔旭  崔咪芬  张进平  汤吉海 《精细化工》2005,22(11):874-877
采用相转移催化剂,氯代环已烷与二硫化钠溶液反应合成了二环已基二硫醚。考察了相转移催化剂的种类、原料摩尔比、反应温度等对反应的影响,比较了相转移催化与溶剂法合成的反应结果。得到的最佳反应条件为:以PTC3为相转移催化剂,反应温度96℃,n(Na2S)∶n(S)∶n(C6H11C l)=1∶0.8∶0.8,氯代环己烷的转化率为98.8%,二环已基二硫醚的选择性为81.4%。与溶剂法相比,反应时间由12~15 h缩短到10 h,收率提高了10%,避免了因使用溶剂带来的后处理问题。  相似文献   

16.
在Al_2O_3负载的镍基纳米催化剂作用下进行了4-甲氧基苯酚催化加氢反应,然后使用双氧水对加氢反应液进行催化氧化合成4-甲氧基环己酮。在催化加氢反应中,考察了沉积-沉淀法和浸渍法及反应条件对催化剂活性和稳定性的影响。通过XRD、H_2-程序升温还原(H_2-TPR)及TEM等对催化剂进行了表征,结果发现,沉积-沉淀法制备的Ni/Al_2O_3-DP催化剂中活性粒子分散度高、粒径较小,并且活性粒子与载体之间有较强的作用力,具有比浸渍法制备的Ni/Al_2O_3-IMP催化剂更好的活性和稳定性。在4-甲氧基苯酚的加氢反应中,以Ni/Al_2O_3-DP为催化剂,最佳的反应条件为:反应温度423 K、反应压力4.0 MPa、反应时间1.0 h、m(4-甲氧基苯酚)∶m(Ni/Al_2O_3-DP)=6∶1。在氧化反应中,探究了氧化条件对反应活性的影响,结果表明:当n(4-甲氧基环己醇)∶n(双氧水)=1.0∶2.5时,353 K反应20 h,目标产物4-甲氧基环己酮的选择性可达95.3%。  相似文献   

17.
探讨了以 Raney- Ni/醇盐体系催化剂低温合成甲醇的可能性 ,得到了以三乙二醇二甲醚作溶剂时反应各影响因素的最佳条件 ;反应压力 ,5 MPa;反应温度 ,1 60°C;反应时间 ,5 h;H2 / CO=2 ;Raney- Ni用量 ,lg;Raney- Ni:CH3 ONa:CH3 OH=1∶ 2∶ 6(质量比 )。发现四氢呋喃是处理Raney- Ni时较好的除水剂  相似文献   

18.
沈茂 《应用化工》2011,(5):853-855,863
以固体超强酸S2O82-/ZrO2-CeO2为催化剂,乳酸和正丁醇为原料合成乳酸丁酯。考察了催化剂的用量,反应物的配比、反应时间、反应温度、催化剂重复使用等因素对反应的影响。结果表明,催化合成乳酸丁酯的最佳条件为:n(丁醇)∶n(乳酸)=3.0∶1.0,w(S2O82-/ZrO2-CeO2)=12.0%(相对于乳酸),温度145℃,反应2.0 h,乳酸的酯化率达96.6%,催化剂可重复多次使用。  相似文献   

19.
采用KH560和KH602硅烷偶联剂对海泡石(SEP)进行有机复合改性,将改性海泡石(OMSEP)加至硅溶胶中制得海泡石纤维/SiO_2复合材料,采用SEM、XRD、FT-IR、TG等手段进行表征分析。结果表明:硅烷偶联剂通过接枝反应接在海泡石表面,并且部分偶联剂分子进入海泡石内部孔道,改变了海泡石的晶格结构。TG分析表明,通过硅烷偶联剂改性提高了海泡石的热稳定性。复合材料性能测试表明,有机改性海泡石的加入提高了硅溶胶的成膜性能、附着力及耐擦洗性能。当改性海泡石与硅溶胶质量比为3∶10时,耐擦洗性能最佳。  相似文献   

20.
用硅胶作吸水剂合成阿司匹林的研究   总被引:1,自引:0,他引:1  
以H2SO4为催化剂、硅胶为吸水剂(S)进行水杨酸(BHA)和乙酸酐的酯化反应,合成乙酰水杨酸。考察了催化剂用量、反应温度、吸水剂用量等反应条件对酯化反应转化率的影响,确定了较理想的合成工艺条件:n(H2SO4)∶n(BHA):∶n(C4H6O3)=0.21∶1∶1、m(S)∶m(BHA)=0.6∶1、反应温度75℃。研究了该酯化反应动力学,确定该反应为1.6级反应,表观反应活化能为63.51kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号