首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Real and reactive power coordination for a unified power flow controller   总被引:2,自引:0,他引:2  
This paper proposes a new real and reactive power coordination controller for a unified power flow controller (UPFC). The basic control for the UPFC is such that the series converter of the UPFC controls the transmission line real/reactive power flow and the shunt converter of the UPFC controls the UPFC bus voltage/shunt reactive power and the DC link capacitor voltage. In steady state, the real power demand of the series converter is supplied by the shunt converter of the UPFC. To avoid instability/loss of DC link capacitor voltage during transient conditions, a new real power coordination controller has been designed. The need for reactive power coordination controller for UPFC arises from the fact that excessive bus voltage (the bus to which the shunt converter is connected) excursions occur during reactive power transfers. A new reactive power coordination controller has been designed to limit excessive voltage excursions during reactive power transfers. PSCAD-EMTDC simulation results have been presented to show the improvement in the performance of the UPFC control with the proposed real power and reactive power coordination controller.  相似文献   

2.
In this paper, three models of the unified power flow controller (UPFC) suitable for three-phase power flow analysis in polar coordinates are presented. The symmetrical components control model can be used to control the positive-sequence voltage of the shunt bus and the total three-phase active and reactive power flows of the transmission line while the injected shunt voltages and the series voltages are balanced, respectively; the general three-phase control model can be used to control the three shunt phase voltages and the six independent active and reactive power flows of the transmission line; the hybrid control model can be used to control the positive-sequence voltage of the shunt bus and the six independent active and reactive power flows of the transmission line. The proposed UPFC models were successfully implemented in a three-phase Newton power flow algorithm in polar coordinates. In the implementation of these UPFC models, transformers of some common connection types, which connect the UPFC with the network, are explicitly represented. Numerical results based on a five-bus system and the modified IEEE 118-bus system are given to illustrate the UPFC control models and demonstrate the computational performance of the three-phase Newton power flow algorithm.  相似文献   

3.
统一潮流控制器的分析与控制策略   总被引:20,自引:5,他引:15  
文中分析了统一潮流控制器(UPFC)系统的电压、无功功率和有功功率的平衡,得到了与UPFC控制相关的2个重要结论。首先,分析表明在UPFC输入端电压保持不变的情况下,线路无功潮流的变化实际上是由并联变换器提供的;其次,UPFC端电压既可以从发送端控制也可以从接收端控制。基于以上分析,提出了一种新颖的UPFC控制策略。在该策略中并联变换器控制UPFC直流母线电压和输电线无功潮流,而串联变换器控制UPFC输入端母线电压幅值和输电线有功潮流。同时,在控制系统中加入有功/无功功率协调控制,可在潮流调节中获得良好的静态、动态性能。最后,通过实验验证了所提出的控制策略的有效性。  相似文献   

4.
Optimal power flow with generation reallocation is a suitable method for better utilization of the existing system. In recent years, Flexible AC Transmission System (FACTS) devices, have led to the development of controllers that provide controllability and flexibility for power transmission. Out of the FACTS devices unified power flow controller (UPFC) is a versatile device, capable of controlling the power system parameters like voltage magnitude, phase angle and line impedance individually or simultaneously. The main aim of this paper is to minimize real power losses in a power system using BAT search algorithm without and with the presence of UPFC. Minimization of real power losses is done by considering the power generated by generator buses, voltage magnitudes at generator buses and reactive power injection from reactive power compensators. The proposed BAT algorithm based Optimal Power Flow (OPF) has been tested on a 5 bus test system and modified IEEE 30 bus system without and with UPFC. The results of the system with and without UPFC are compared in terms of active power losses in the transmission line using BAT algorithm. The obtained results are also compared with Genetic algorithm (GA).  相似文献   

5.
A supplementary damping controller for a unified power flow controller (UPFC) is designed for power system dynamic performance enhancement. To maintain a good damping characteristic over a wide range of operating conditions, the gains of the UPFC supplementary damping controller are adapted in real time, based on online measured transmission line loadings (active and reactive power flows). To speed up the online gain adaptation process, an artificial neural network is designed. A major feature for the proposed adaptive UPFC supplementary damping controller is that only physically measurable variables (active and reactive power flows over the transmission line) are employed as inputs to the adaptive controller. To demonstrate the effectiveness of the proposed adaptive UPFC supplementary damping controller, computer simulations are performed on a power system subject to a three-phase fault. It is concluded from the simulation results that the proposed adaptive UPFC supplementary damping controller can yield satisfactory dynamic responses over a wide range conditions. The electromechanical mode with an oscillation frequency around 0.78 Hz has been effectively damped by the proposed damping compensators.  相似文献   

6.
7.
传统统一潮流控制器(UPFC)价格昂贵,损耗高,谐波含量高,在电力系统中不能很好地推广使用。文中提出一种混合型UPFC,它由“Sen” Transformer(ST)和传统UPFC串联组成,ST通过控制普通的有载调压开关,实现360°离散可调串联电压,UPFC利用电力电子开关原理实现360°连续可调的串联电压,两者共同工作起到控制系统潮流的作用。与传统大容量UPFC相比,混合型UPFC使用小容量UPFC,能够达到大容量UPFC的潮流控制范围,具有成本低、效率高、电磁兼容性好、谐波含量低、易于实现的优点,解决了导致现阶段UPFC不能推广使用最为重要的成本问题。混合型UPFC是具有极高性价比和效率的潮流控制器件,具有广阔的应用前景。  相似文献   

8.
Unified Power Flow Controller (UPFC) is a versatile Flexible AC Transmission System (FACTS) device that has the capability of controlling voltage, power flow, and stability of a power system. It has been reported that the control of power flow by a UPFC introduces very strong dynamic interactions between the active and reactive power flow through a line. In this paper, a singular value decomposition (SVD) based controller of UPFC is proposed to reduce or eliminate the dynamic interaction between the active and reactive power flow. The performance of the proposed SVD controller is evaluated in both ideal and practical systems. The results obtained are then compared with those found for the static decoupled (SD) and PI controllers. It is observed that the proposed SVD controller can significantly reduce the dynamic interaction between the active and reactive power flow through the line and it is achieved by decoupling the interaction between the direct and quadrature axes control variables.  相似文献   

9.
UPFC的交叉耦合控制及潮流调节能力分析   总被引:4,自引:1,他引:4  
研究了UPFC控制传输线路潮流能力,通过对系统功率平衡及UPFC的潮流控制特性分析,在三维空间中绘出了UPFC各部分的功率运行曲面,为有效选取UPFC各部分的功率容量和判断潮流控制方案的可行性提供了一个直观的手段,说明了在UPFC中采用交叉耦合控制的可行性。利用串联变换器注入传输线路电压的d轴分量控制传输线路上的无功潮流,用q轴分量控制传输线路上的有功潮流。控制系统设计中利用频率特性法得到了功率环PI调节器的参数。实验结果表明采用文中所述的控制策略能够使UPFC有良好的潮流调节性能。  相似文献   

10.
The unified power flow controller (UPFC) is the most versatile flexible ac transmission system (FACTS) controller which can be used to control active and reactive power flows in a transmission line in addition to the bus voltage. The active series compensation is provided by injecting series reactive voltage. The voltage at the two ports of UPFC are regulated by control of shunt current and series real voltage. It also has several operating control modes such as voltage and power regulation, line impedance compensation, etc. This paper presents the analysis and study of sub-synchronous resonance (SSR) characteristics of UPFC. The various combination of operating modes of shunt and series converters are considered for investigating their effect on SSR characteristics.The analysis of SSR with UPFC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. The frequency domain method considers D-Q model of UPFC for the computation of damping torque for quick check in determining torsional mode stability. The study is performed on IEEE First Benchmark Model (FBM).  相似文献   

11.
Unified power flow controller (UPFC) is used for controlling the real and reactive power in transmission line and bus voltage simultaneously and independently. An additional task of UPFC is to increase transmission capacity as result of power oscillation damping. The effectiveness of this controller depends on its optimal location and proper signal selection in the power system network. A residue factor has been proposed to find the optimal location of the UPFC controllers and eigenvalue analyses are used to assess the most appropriate input signals (stabilizing signal) for supplementary damping control of UPFC to damp out the inter-area mode of oscillations. The proposed residue factor is based on the relative participation of the parameters of UPFC controller to the critical mode. A simple approach of computing the residue factor has been proposed, which combines the linearized differential algebraic equation model of the power system and the UPFC output equations. While for signal selection a right-half plane zeros (RHP zeros) and Hankel singular value (HSV) is used as tools to select the most receptive signal to a mode of the inter-area oscillation. The placements of UPFC controllers have been obtained for the base case and for the dynamic critical contingences. The effectiveness of the proposed method of placement and selection of signals are demonstrated on practical network of TNB 25 bus system of south Malaysian network and New England 39 bus system.  相似文献   

12.
刘黎明  康勇  陈坚  朱鹏程 《电源学报》2006,4(4):272-278
本文研究了UPFC控制传输线路潮流能力,通过对系统功率平衡以及UPFC的潮流控制特性分析,在三维空间中绘出了UPFC各部分的功率运行曲面,为有效选取UPFC各部分的功率容量和判断潮流控制方案的可行性提供了一个直观的手段,说明了在UPFC中采用交叉耦合控制的可行性。利用串联变换器注入传输线路电压的d轴分量控制传输线路上的无功潮流,而用q轴分量来控制传输线路上的有功潮流。控制系统设计中利用频率特性法得到了功率环PI调节器的参数。最后实验结果表明采用文中所述的控制策略能够使得UPFC有良好的潮流调节性能。  相似文献   

13.
统一潮流控制器(UPFC)应用于潮流调控时,计及UPFC调控参数的交流潮流计算是非凸、非线性问题,且多台装置间的非线性交叉耦合特性也会直接影响优化配置方案。为此,基于UPFC的潮流调控特性,构建了计及UPFC的松弛型交流潮流二阶锥规划模型;计及风电的不确定性,协同考虑UPFC的规划和电力系统的调度问题,建立了计及UPFC最优配置的电力系统鲁棒协同优化模型,并采用列和约束生成算法进行求解。以IEEE RTS-24节点系统为算例进行仿真分析,结果表明所提协同优化策略有效提升了UPFC配置方案的适应性,提高了系统运行经济性和风电消纳能力,增强了系统运行调控的灵活性。  相似文献   

14.
In this paper a novel configuration employing multistage two-leg three phase converters for UPFC is proposed. The switching level modeling of UPFC is carried out using IGBT based shunt and series converters. The proposed converter has the capability of delivering sinusoidal input current with unity power factor and bidirectional power flow. The operating performance of UPFC is demonstrated on Single Machine Infinite Bus (SMIB) system and IEEE 14 Bus system for different load conditions. The real and reactive power tracings through the transmission lines in the system are obtained. The simulation study is carried out in a MATLAB/SIMULINK environment. The proposed topology effectively controls the real and reactive power flow in the transmission lines. This model considerably improves the system stability by damping the oscillation during the vulnerable conditions.  相似文献   

15.
统一潮流控制器(UPFC)并联侧连续的无功调节能力为电力系统无功优化提供了新的控制手段。基于此,首先建立适用于新型UPFC拓扑的UPFC稳态模型;然后考虑无功设备动作次数的约束,明确多目标无功优化问题的目标函数和约束条件,建立计及UPFC的多目标无功优化模型;接着,提出一种多阶段方法对其进行求解,其中,第一阶段将原问题进行松弛并采取归一化的方法统一多个目标的量纲,第二阶段基于规格化平面约束法获取松弛问题的Pareto最优候选解集,并给出折衷解的选取方法,第三阶段基于三角罚函数法对折衷解中的整数变量进行归整,获取原问题的最优折衷整数解。最后,对南京西环网实际等值系统进行算例测试,验证了算法的有效性及UPFC在无功优化问题中的应用前景。  相似文献   

16.
刘黎明  康勇  陈坚  朱鹏程 《电源学报》2005,3(4):281-285
本文重点讨论了UPFC控制线路潮流的效果,提出了交叉解耦控制和交叉耦合控制。分析可知,在系统所有参数已知的条件下,采用交叉解耦控制的UPFC有最快的响应速度。而在传输线路参数不确定的情况下,采用交叉耦合控制的UPFC有最好的动态性能。最后实验结果表明两种方式控制的UPFC均有较好的潮流调节能力。  相似文献   

17.
研究了自适应统一潮流控制器(U PFC)模糊逻辑辅助阻尼控制器的设计方法。从振荡能量函数角度分析了U PFC安装线路的功率振荡特性,提出了以降低振荡能量为控制目标的阻尼控制策略。控制器以U PFC线路的功率为输入信号,通过对系统运行状态和控制效果进行评判,应用模糊规则自适应地调节控制参数,实现对系统功率振荡的有效抑制。控制器设计不需要系统的精确模型和参数。在10机新英格兰测试系统上的仿真研究表明,该控制器控制效果明显优于线性控制器,能有效抑制系统低频振荡,提高电力系统的动态稳定性水平,且具有较强的鲁棒性。  相似文献   

18.
This paper proposes a real-time control system for a single-phase unified power flow controller (UPFC) which is constructed as a pilot power-quality compensation equipment of an electrical railway, and shows simulation and experimental results. For simulation, the control system is modeled in the form of block diagrams by using the Simulink, where the main control effort is focused on the power flow control with the UPFC and the hysteresis current controller is adopted to control the single-phase inverters of the UPFC. And for a small-scale rapid prototyping of the UPFC-equipped control system, the simulation blocks are modified and a real-time control platform is developed by using the real-time workshop and multiple digital signal processors. Both simulation and experiment results have proved the effectiveness of the proposed control system.  相似文献   

19.
The unified power flow controller (UPFC), with its unique combination of fast shunt and series compensation, is a powerful device which can control three power system parameters. In planning and designing such devices in power systems, power engineers must consider the impact of device internal limits on its performance. This paper develops a power injection model (PIM) based UPFC control approach to consider a number of internal limits imposed on the UPFC, including series injection voltage magnitude, line current through the series inverter, real power transfer between the shunt inverter and series inverter, shunt side current and shunt injection voltage magnitude. Constrained control strategies are proposed and tested on a 28-node test system. The numerical results illustrate the effectiveness of the proposed method  相似文献   

20.
一种新型的统一潮流控制器设计方法   总被引:1,自引:1,他引:1       下载免费PDF全文
在介绍统一潮流控制器(UPFC)的构成、电压空间矢量脉宽调制技术及带有UPFC单机无穷大系统的 数学模型之后,采用两种控制策略来设计UPFC。第一部分采用电流预测的d q轴解耦控制策略结合电压空 间矢量脉宽调制技术来调节线路有功功率及无功功率。第二部分采用多输入单输出的自组织模糊神经网络和d q轴解耦控制策略并结合电压空间矢量脉宽调制技术来维持节点电压及电容器端电压的稳定。Matlab仿真结果表明:基于以上两种控制策略的UPFC能有效调节线路的有功功率及无功功率,保证节点电压及电 容器端电压的稳定,证明该  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号