首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
由于码垛机器人应用环境复杂、不确定条件多等诸多问题,针对现有的避障轨迹规划算法存在的划分空间上的繁琐情况,提出了一种智能避障轨迹规划算法,包括障碍物信息提取和避障轨迹设计,最大程度降低障碍物信息与轨迹设计部分的耦合度,达到减少动态空间下频繁划分空间的目的.最后在OPENGL软件上研发的三维仿真平台上进行运动学仿真与验证.仿真结果表明,改进算法规划出的轨迹能有效避开障碍物且轨迹符合预期的要求,充分验证了轨迹规划算法的可行性和有效性.  相似文献   

2.
随着机器人运动环境日益复杂,为了使机器人可以安全、有效地避开动态障碍到达目的地,提出一种基于改进比例导引法的机器人动态避障算法;首先借助比例导引法的思想,通过使机器人与动态障碍物的相对速度方向导引到避障向量方向完成避障,然后为满足避障完成时间和机器人机动性能约束要求,得到重叠比例导引系数取值范围,并采用比例导引法对机器人运动路径进行规划到达目的地,最后采用仿真实验测试其有效性;仿真结果表明,该算法可以使机器安全有效地避开动态障碍物,对机器人的实际运动轨迹控制具有一定的参考价值.  相似文献   

3.
针对通讯受限条件下大规模移动机器人编队任务, 本文提出了基于行为的分布式多机器人线形编队控制 和避障算法. 机器人个体无需获得群体中所有机器人的信息, 而是根据传感器获取的环境信息和局部范围内的机器 人信息对其自身的调整方向进行预测, 并最终很好地完成了设定的编队及避障任务. 由于本文方法需求的通讯量不 大, 并且采用分布式控制, 因此该方法适用于大规模的机器人集群编队任务. 文中还给出了本系统的稳定性分析, 证 明了系统的稳定性. 实验结果表明该算法使得机器人能够仅通过局部信息形成线形编队, 在遇到障碍物后能够灵活 避开障碍物, 并且在避开障碍物进入安全区域后重新恢复线形编队.  相似文献   

4.
在这篇论文中, 我们利用一个统一的算法框架来解决移动机器人的队形控制和主动避障问题, 使得编队中的从机器人在避开障碍物的同时, 能够与被跟踪的主机器人保持期望的相对距离或相对方位. 在现有的关于主—从跟踪编队控制的文献中, 为了实现对主机器人快速准确的跟踪, 从机器人在跟踪控制时需要主机器人在惯性坐标系下的绝对运动速度作为队形跟踪控制器的输入. 然而, 在一些环境中, 主机器人的绝对运动状态很难获得. 这里, 我们将利用主—从机器人之间的相对速度来建立机器人编队系统的运动学模型. 基于这个模型的编队控制方法将不再需要测量主机器人的绝对运动速度. 进一步地, 上述的建模和控制方法被扩展为一个移动机器人的动态避障方法, 该方法利用机器人与障碍物之间相对运动状态作为避障控制器的信息输入. 利用由三个非完整移动机器人组成的多机器人系统, 验证了所提出编队控制方法的有效性.  相似文献   

5.
针对模块化机械臂在运行时可能与工作空间中的障碍物发生碰撞的问题, 提出一种基于遗传算法的避障路径规划算法。首先采用D-H(Denavit-Hartenberg)表示法对机械臂进行建模, 并进行运动学和动力学分析, 建立机械臂运动学和动力学方程。在此基础上, 利用遗传算法分别在单/多个障碍物工作环境中, 以运动的时间、移动的空间距离和轨迹长度作为优化指标, 实现机械臂避障路径规划的优化。通过仿真验证了基于遗传算法的机械臂避障路径规划算法的有效性与可行性, 该算法提高了运行中的机械臂有效避开工作空间中障碍物的效率。  相似文献   

6.
针对在有障碍物场地中感知范围受限的群机器人协同围捕问题,本文首先给出了机器人个体、障碍物、目标的模型,并用数学形式对围捕任务进行描述,在此基础上提出了机器人个体基于简化虚拟速度和基于航向避障的自主围捕控制律.基于简化虚拟速度模型的控制律使得机器人能自主地围捕目标同时保持与同伴的距离避免互撞;基于航向的避障方法提升了个体的避障效率,避免斥力避障方法导致的死锁问题.其次本文证明了在该控制律下系统的稳定性.仿真结果表明,该算法在有效围捕目标的同时能够高效地避开障碍物,具有对复杂环境的适应性.最后本文分析了与其他方法相比该算法的优点.  相似文献   

7.
研究车辆倒车突发障碍物规避优化问题.在车辆倒车过程中,由于识别时间较少,会随机出现一些突发障碍物.传统算法进行车辆倒车突发避障,障碍检测过程需要一定的时间,存在一定的滞后性,从而无法及时避开障碍物,降低了车辆倒车突发避障的准确性.为了避免传统算法的弊端,提出了一种新的车辆倒车突发障碍物避障方法.通过对道路障碍图像进行障碍特征提取,从而为车辆倒车突发避障提供依据.引入障碍定位方法,利用小波包分析方法,计算道路中障碍物的空间位置,降低处理时间,从而提高了车辆倒车突发避障的准确率.实验结果表明,利用优化方法进行车辆倒车突发避障,突发避障的准确率比传统算法提高了63%,具有很强的实际应用价值.  相似文献   

8.
风管清扫机器人是一种用来清扫中央空调通风管道内壁的机械手,工作环境恶劣、管道空间障碍复杂。风管清扫机器人的无碰撞运动对于实现其3D非重复接触和高速旋转刷的最优遍历清洗至关重要。以光流密度作为使用避障的光源,结合光流和人工势场法,以光流法进行障碍物检测,人工势场法进行避障规划,提出一种局部路径规划的障碍物检测及避障方法。实验结果表明,斥力势场矢量指向避开障碍物的方向,而且势场主要受障碍物的光流的影响,并由最近的障碍物来确定。通过与平衡策略方法对比,也验证了此方法的有效性。  相似文献   

9.
针对移动机器人在未知环境中的不确定性,利用Matlab构建了多传感器仿真试验移动平台,在Simulink中搭建移动机器人运动学模型,利用多传感器采集环境中的障碍物信息与目标物的方位角,设计了具有避障功能的模糊控制算法.通过模糊控制器控制移动机器人的左右轮速度实现机器人的转弯以及直走,根据机器人实时的角度反馈信息不断修正机器人的位姿以精确避障.仿真实验验证了该方法的可行性及有效性.  相似文献   

10.
研究了挖掘机器人如何探测和处置力与几何障碍,阐述了挖掘机器人的避障方法.在事先规划机器人挖掘和运土路径时,不考虑意外出现的障碍物;而在挖掘过程中,模糊局部自主控制器将油缸压力、压力变化和位移信息作为模糊控制规则的输入量,产生处理力障碍的控制信号.在运土过程中,通过构造几何障碍物前的"虚拟阻力区"和采用阻抗控制,实现障碍的自主回避.实验表明所提出的方法是可行的.  相似文献   

11.
For service robots coexisting with humans, both safety and working efficiency are very important. In order for robots to avoid collisions with surrounding obstacles, the robots must recognize obstacles around them. In dynamic environments, not only currently moving obstacles but also movable obstacles should be recognized. In this paper, three types of obstacles, such as stationary, movable and moving, are defined, and a method to identify the type of obstacles is proposed. The experiments using a mobile robot were conducted to evaluate the usefulness of the method.  相似文献   

12.
Monocular vision-based navigation is a considerable ability for a home mobile robot. However, due to diverse disturbances, helping robots avoid obstacles, especially non-Manhattan obstacles, remains a big challenge. In indoor environments, there are many spatial right-corners that are projected into two dimensional projections with special geometric configurations. These projections, which consist of three lines, might enable us to estimate their position and orientation in 3D scenes. In this paper, we present a method for home robots to avoid non-Manhattan obstacles in indoor environments from a monocular camera. The approach first detects non-Manhattan obstacles. Through analyzing geometric features and constraints, it is possible to estimate posture differences between orientation of the robot and non-Manhattan obstacles. Finally according to the convergence of posture differences, the robot can adjust its orientation to keep pace with the pose of detected non-Manhattan obstacles, making it possible avoid these obstacles by itself. Based on geometric inferences, the proposed approach requires no prior training or any knowledge of the camera’s internal parameters, making it practical for robots navigation. Furthermore, the method is robust to errors in calibration and image noise. We compared the errors from corners of estimated non-Manhattan obstacles against the ground truth. Furthermore, we evaluate the validity of convergence of differences between the robot orientation and the posture of non-Manhattan obstacles. The experimental results showed that our method is capable of avoiding non-Manhattan obstacles, meeting the requirements for indoor robot navigation.   相似文献   

13.
针对非线性轮式移动机器人的避障以及多机器人间的相互避碰问题,提出了一种基于预测窗的避障避碰算法.首先为了便于预测碰撞的发生,通过反馈线性化将非线性的机器人运动学模型转化成线性模型;然后根据线性模型预测会导致机器人发生碰撞的所有相对虚拟加速度变化量集合,称之为加速度变化障碍.基于此,为每个机器人构造既能躲避障碍物又能相互避碰的可行加速度变化集合.然后通过优化指标函数求得最优虚拟加速度变化量,最后将其转换成机器人的实际控制量.这种算法与现有的相比,可使机器人在避障或避碰过程中的行驶方向角、线速度的变化幅值更小,角速度和线加速度的变化更为平顺,而且运行所用的平均时间更短.仿真结果演示了所提出算法的有效性和相对于已有方法的优势.  相似文献   

14.
This paper proposes a decentralized behavior-based formation control algorithm for multiple robots considering obstacle avoidance. Using only the information of the relative position of a robot between neighboring robots and obstacles, the proposed algorithm achieves formation control based on a behavior-based algorithm. In addition, the robust formation is achieved by maintaining the distance and angle of each robot toward the leader robot without using information of the leader robot. To avoid the collisions with obstacles, the heading angles of all robots are determined by introducing the concept of an escape angle, which is related with three boundary layers between an obstacle and the robot. The layer on which the robot is located determines the start time of avoidance and escape angle; this, in turn, generates the escape path along which a robot can move toward the safe layer. In this way, the proposed method can significantly simplify the step of the information process. Finally, simulation results are provided to demonstrate the efficiency of the proposed algorithm.  相似文献   

15.
简单介绍了NuBot机器人的两个主要组成部分:全向视觉和全向运动系统,并给出了运动学分析.基于该机器人平台,提出了D-A和D-D控制两种跟踪算法.通过机器人之间的相对定位和局部通信,实现了多机器人编队的分布式控制,同时,该算法可对机器人朝向进行独立控制.针对不同情况下的编队避障问题,提出了编队变形和编队变换两种方法.仿真和实际机器人实验表明,D-A控制方法能够实现平滑的编队变换;编队变形方法能够在尽量保持原始队形的情况下保证编队顺利避障.  相似文献   

16.
A new method to on-line collision-avoidance of the links of redundant robots with obstacles is presented. The method allows the use of redundant degrees of freedom such that a manipulator can avoid obstacles while tracking the desired end-effector trajectory. It is supposed that the obstacles in the workspace of the manipulator are presented by convex polygons. The recognition of collisions of the links of the manipulator with obstacles results on-line through a nonsensory method. For every link of the redundant manipulator and every obstacle a boundary ellipse is defined in workspace such that there is no collision if the robot joints are outside these ellipses. In case a collision is imminent, the collision-avoidance algorithm compute the self-motion movements necessary to avoid the collision. The method is based on coordinate transformation and inverse kinematics and leads to the favorable use of the abilities of redundant robots to avoid the collisions with obstacles while tracking the end-effector trajectory. This method has the advantage that the configuration of the manipulator after collision-avoidance can be influenced by further requirements such as avoidance of singularities, joint limits, etc. The effectiveness of the proposed method is discussed by theoretical considerations and illustrated by simulation of the motion of three-and four-link planar manipulators between obstacles.  相似文献   

17.
Kinematically redundant robots allow simultaneous execution of several tasks with different priorities. Beside the main task, obstacle avoidance is one commonly used subtask. The ability to avoid obstacles is especially important when the robot is working in a human environment. In this paper, we propose a novel control method for kinematically redundant robots, where we focus on a smooth, continuous transition between different tasks. The method is based on a new and very simple null-space formulation. Sufficient conditions for the tasks design are given using the Lyapunov-based stability discussion. The effectiveness of the proposed control method is demonstrated by simulation and on a real robot. Pros and cons of the proposed method and the comparison with other control methods are also discussed.  相似文献   

18.
In this paper, a new numerical method for inverse kinematics with prioritized multiple targets is proposed. The proposed method is constructed based on the virtual spring model and joint-based damping control. The targets are prioritized by adjusting the effect of the virtual springs. The proposed method has the following three features. First, it does not require complex calculations such as a Jacobian matrix projection into the null space. Second, it can solve prioritized inverse kinematics problems in the position level without integrating the joint velocity. Third, it is robust to parameter variations and singular configurations. The second feature is motivated by the background that most industrial robots in factories are used as position-controlled robots. Simulation experiments using a 9-DOF redundant robot show that the proposed method is faster and more robust than the conventional method. The proposed method is expected to be useful for helping to avoid collisions between links and obstacles using the redundancy.  相似文献   

19.
In an autonomous multi-mobile robot environment, path planning and collision avoidance are important functions used to perform a given task collaboratively and cooperatively. This study considers these important and challenging problems. The proposed approach is based on a potential field method and fuzzy logic system. First, a global path planner selects the paths of the robots that minimize the potential value from each robot to its own target using a potential field. Then, a local path planner modifies the path and orientation from the global planner to avoid collisions with static and dynamic obstacles using a fuzzy logic system. In this paper, each robot independently selects its destination and considers other robots as dynamic obstacles, and there is no need to predict the motion of obstacles. This process continues until the corresponding target of each robot is found. To test this method, an autonomous multi-mobile robot simulator (AMMRS) is developed, and both simulation-based and experimental results are given. The results show that the path planning and collision avoidance strategies are effective and useful for multi-mobile robot systems.  相似文献   

20.
Legged robots are exceedingly versatile and have the potential to navigate complex, confined spaces due to their many degrees of freedom. As a result of the computational complexity, there exist no online planners for perceptive whole‐body locomotion of robots in tight spaces. In this paper, we present a new method for perceptive planning for multilegged robots, which generates body poses, footholds, and swing trajectories for collision avoidance. Measurements from an onboard depth camera are used to create a three‐dimensional map of the terrain around the robot. We randomly sample body poses then smooth the resulting trajectory while satisfying several constraints, such as robot kinematics and collision avoidance. Footholds and swing trajectories are computed based on the terrain, and the robot body pose is optimized to ensure stable locomotion while not colliding with the environment. Our method is designed to run online on a real robot and generate trajectories several meters long. We first tested our algorithm in several simulations with varied confined spaces using the quadrupedal robot ANYmal. We also simulated experiments with the hexapod robot Weaver to demonstrate applicability to different legged robot configurations. Then, we demonstrated our whole‐body planner in several online experiments both indoors and in realistic scenarios at an emergency rescue training facility. ANYmal, which has a nominal standing height of 80 cm and a width of 59 cm, navigated through several representative disaster areas with openings as small as 60 cm. Three‐meter trajectories were replanned with 500 ms update times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号