首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 19 毫秒
1.
车内低频噪声与悬架特性参数的定量关系   总被引:2,自引:0,他引:2  
基于车身乘坐室声振耦合的动态子结构修改方法,将汽车悬架系统视为附加于车身上的子结构(子系统),并结合悬架系统对路面不平度位移激励的振动传递效应,揭示出车内低频噪声的声压值与悬架系统刚度、阻尼、非悬挂质量以及轮胎径向刚度、径向阻尼问的直接定量关系。然后,通过算例及相应的实验验证了其正确性.  相似文献   

2.
车内低频结构噪声是汽车NVH 特性研究的重要内容,判断低频噪声的主要来源和降低车内低频噪声水平对于控制车内噪声有着重要意义。运用声传递向量(ATV)技术,对车内低频噪声进行预测仿真,得到场点频响函数并针对该场点进行面板贡献度分析;运用模态声传递向量(MATV)技术,进行车身结构模态贡献量分析,提取贡献较大的模态结果,进而预测对场点声压影响较大的车身结构。经过车身结构改进后,车内低频噪声得到一定程度抑制。为改进车内噪声水平提供一定的参考依据。  相似文献   

3.
为分析车室受路面随机激励作用产生的低频轰鸣声,采用白噪声过滤方法模拟路面随机激励,建立路面随机激励时域模型,根据拉格朗日原理建立整车七自由度振动动力学模型,利用Matlab建立受路面随机激励作用引起的悬架激励力仿真模型,并通过快速傅里叶变换得到悬架激励力幅频谱。利用Hypermesh建立车身结构有限元模型和空腔声场有限元模型,分别利用Nastran、Virtual.Lab计算车身结构模态和空腔声场模态,并采用模态叠加法计算声固耦合系统模态,最后施加悬架激励力载荷进行基于模态的耦合声学响应分析。分析结果表明:在频率20 Hz~50 Hz范围内,路面随机激励对车室低频耦合轰鸣声的贡献较大,以结构变形为主的耦合系统模态,受路面随机激励作用极易使车室空腔出现低频耦合轰鸣声。  相似文献   

4.
以某乘用车怠速工况下的车内噪声为研究对象,建立内饰车身的声-固耦合有限元模型,施加实测的加速度激励预测车内噪声响应。通过有限元模型获取系统传递函数,结合实测加速度激励建立传递路径分析模型,分析怠速工况下驾驶员右耳位置121 Hz频率处各路径的声学噪声贡献情况,以贡献量较大的路径为板件贡献量分析的激励输入位置,确定后地板为铺设阻尼的目标板件。以121 Hz处驾驶员右耳声压最小为目标,建立拓扑优化模型,对后地板阻尼进行布局优化。结果表明,怠速工况下121 Hz峰值频率处驾驶员右耳声压级下降5.59 dB(A),传递路径分析对阻尼结构优化设计具有一定指导作用。  相似文献   

5.
以某乘用车怠速工况下的车内噪声为研究对象,建立内饰车身的声-固耦合有限元模型,施加实测的加速度激励预测车内噪声响应。通过有限元模型获取系统传递函数,结合实测加速度激励建立传递路径分析模型,分析怠速工况下驾驶员右耳位置121 Hz频率处各路径的声学噪声贡献情况,以贡献量较大的路径为板件贡献量分析的激励输入位置,确定后地板为铺设阻尼的目标板件。以121 Hz处驾驶员右耳声压最小为目标,建立拓扑优化模型,对后地板阻尼进行布局优化。结果表明,怠速工况下121 Hz峰值频率处驾驶员右耳声压级下降5.59 dB(A),传递路径分析对阻尼结构优化设计具有一定指导作用。  相似文献   

6.
车内噪声预测与面板声学贡献度分析   总被引:14,自引:4,他引:14  
面板声学贡献度分析是汽车NVH特性研究的重要内容,识别各面板对车内场点的贡献度对于控制车内噪声有着重要意义。利用有限元结合边界元的方法,建立三维车辆乘坐室声固耦合模型,使用ANSYS软件计算出乘坐室在20-200Hz频率的声固耦合振动特性后,采用LMS Virtual.lab软件预测了驾驶员左、右耳的声压响应。并通过各壁板对驾驶员右耳声压的面板贡献度分析,得出了各壁板对驾驶员右耳总声压的贡献度,为降低车内某点噪声进行结构修改提供理论依据。通过对结构修改,有效降低了车内某点噪声。  相似文献   

7.
为分析路面激励引起的车内结构噪声,建立整车结构有限元模型及流体声腔有限元模型;在车轮销轴处施加激励,仿真计算车内对销轴处的声学灵敏度。对仿真结果进行功率叠加,得到车内对销轴处的整体声学灵敏度。该整体声学灵敏度可作为分析路面激励引起的车内结构噪声的依据。在同等边界条件下,对有限元计算结果进行试实验验证。通过模态贡献量分析等方法分析车身结构、后悬架等对车轮销轴声学灵敏度的贡献;对0~200 Hz车内结构噪声处理提出相应的建议。  相似文献   

8.
为降低某型号内燃机车驾驶室噪声,对驾驶室结构上的阻尼材料进行布局优化设计。建立驾驶室声学数值模型,采用基于模态的声-振耦合法计算驾驶室声学响应,提取驾驶员耳旁声压级找出噪声声压峰值处所对应的振动频率;对驾驶室进行板块贡献量分析,找到对噪声声压峰值处噪声贡献较大的壁板;为了降低39 Hz、73 Hz、110 Hz频率处噪声,建立拓扑优化数值模型求解自由阻尼的优化布局,构建优化后的数值模型计算5 Hz~120 Hz驾驶室声学响应,结果表明自由阻尼材料的优化布局能够降低驾驶室内噪声。  相似文献   

9.
针对某SRV车,建立可靠的白车身有限元模型、声腔边界元模型和有限元边界元耦合模型;在计算出场点声压频率响应的基础上,对峰值频率处进行面板贡献量分析,找出产生峰值声压的主要来源;基于模态修改法优化主要振动区域腹部节点的速度来降低车内噪声。  相似文献   

10.
针对某特种车车内噪声水平较高问题,建立车身结构与声固耦合有限元分析模型,并进行车身振动频响分析和车内声压响应分析;通过仿真结果与实车道路试验结果对比,验证车身结构和声固耦合有限元模型的有效性;利用耦合声学边界元法进行驾驶室内部声学特性研究,识别出不同工况的主要噪声频率;并对影响车内噪声的车身板件进行声学贡献分析,找到对车内声压贡献最大的板件;最后对声学贡献大的板件粘贴阻尼材料来对车内进行降噪,车内噪声得到较为明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号