首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以2-苯基苯酚和9-芴酮为原料,于60℃进行羰基偶合反应得到含双苯侧基芴结构双酚单体9,9-双(3-苯基-4-(4-羟基)苯基)芴,进一步经芳香亲核取代、氧化还原得到一种同时含二甲基、双苯侧基和芴结构的新型芳香二胺单体——9,9-双(3-苯基-4-(4-氨基-2-甲基苯氧基)苯基)芴二胺单体。由该二胺分别与对苯二酸、2,2-双(4-羧基苯基)六氟丙烷、4,4-二苯醚二甲酸通过磷酰化缩合反应合成一系列聚芳酰胺,分别利用核磁共振氢谱、红外光谱、X射线衍射对所合成的聚芳酰胺的分子结构和聚集体结构进行了表征,并对聚合物的溶解性、特性黏数、热性能、力学性能等进行了研究分析。研究结果表明,该类含二甲基、双苯侧基和芴结构的聚芳酰胺为无定形态,且具有优异的溶解性能,能溶于二甲基乙酰胺、二甲基甲酰胺、甲基吡咯烷酮、四氢呋喃、吡啶等有机溶剂。聚合物具有良好的热性能和力学性能(空气和氮气中10%的热失重温度均达到450℃以上,玻璃化转变温度在216~234℃,拉伸强度最高达到85. 6 MPa)。刚性扭曲非共平面结构及二取代甲基的存在赋予了该系列聚芳酰胺良好的综合性能。  相似文献   

2.
利用磺化二胺单体9,9-双(4-氨基苯基)芴-2,7-二磺酸和1,4-双(4-氨基-2-三氟甲基苯氧基)苯、4,4’-二甲酸二苯醚通过磷酰化共缩聚,制备了一系列同时含芴基和三氟甲基结构的磺化聚芳酰胺(SPA-50~SPA-70)。该类磺化聚芳酰胺特性黏度在0.80~0.94dL/g,离子交换容量(IEC)在1.44~1.98mequiv/g,并具有良好的溶解性和成膜性。进一步研究了该类磺化聚芳酰胺薄膜的吸水率、尺寸稳定性、化学稳定性、热稳定性以及质子传导性。研究发现,磺化度为70%的聚合物样品具有优良的综合性能:其在80℃时的吸水率为23.5%,溶胀率为8.6%,质子传导率为123mS/cm,在Fenton试剂中的耐氧化时间超过6h。  相似文献   

3.
以自制含芴双酚化合物9,9-双(3-叔丁基-4-(4-羟基)芴和对氯硝基苯等为起始原料,经2步有机反应,合成了一种新型含芴和大侧基取代芳香二胺单体——9,9-双(3-叔丁基-4-(4-氨基苯氧基)苯基)芴(2)。利用二胺单体2分别与一系列芳香二酐经一步法高温缩聚,制得了一系列聚酰亚胺——PI 3a~3c。其特性黏度在0.69~0.81 d L/g之间。该类聚酰亚胺表现出优异的溶解性能,室温下不仅可以溶于N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺等高沸点的有机溶剂,还能溶于低沸点的三氯甲烷、二氯甲烷等溶剂中。该系列聚酰亚胺还表现出良好的热学性能,玻璃化转变温度在285℃以上。空气和氮气中10%热失重温度分别在400℃和500℃以上。所制薄膜的拉伸强度在74.7~85.4 MPa之间,断裂伸长率为6.6%~10.3%,弹性模量1.8~2.7 GPa。  相似文献   

4.
通过三步有机反应合成了一种新型含四甲氧基芴结构的芳香型二胺单体——9,9-双(3,5-二甲氧基-4-(4-氨基苯氧基)苯基)芴,由这种单体分别与4种商品化芳香二酐经过高温缩聚反应,制得一系列含芴结构聚酰亚胺(PI 4a~4d)。分别用傅里叶红外光谱、核磁共振波谱、差示扫描量热及热失重分析等对聚合物的结构和性能进行了表征和研究。该类聚酰亚胺在甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)、二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)等高沸点溶剂及CHCl_3、CH_2Cl_2等低沸点溶剂中具有优异的溶解性;所制得的薄膜具有良好的力学性能,其拉伸强度为62.1~75.6 MPa,断裂伸长率在16.0%~20.7%之间,弹性模量为1.8~2.6 GPa。该系列聚酰亚胺的玻璃化转变温度在244~256℃之间,空气和氮气中10%热失重温度均在430℃以上,表现出优异的热学性能。  相似文献   

5.
以9-芴酮和2-异丙基苯酚为起始原料,经一步有机反应,合成了一种含二异丙基芴结构双酚单体9,9-双(3-异丙基-4-羟基苯基)芴(IPBF)。将该单体分别与4,4’-二氟二苯甲酮,1,4-双(4-氟苯甲酰基)苯经高温溶液缩聚,制备了一类可溶性聚芳醚酮。该类聚芳醚酮表现出优异的溶解性能,常温下不仅能溶于高沸点溶剂N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)和二甲基甲酰胺(DMF)中,还能溶于低沸点的CHCl3、四氢呋喃(THF)等溶剂中。由该类聚合物溶液涂覆所制薄膜表现出良好的热学性能及力学性能,其在空气和氮气中10%热失重温度都在400℃以上,膜最大拉伸强度达65 MPa。此外,该系列聚芳醚酮还具有浅的颜色和较好的光学透明性。  相似文献   

6.
利用水合肼法成功合成了含芴基、醚键及烷基的二胺单体9,9-双(3,5-二甲基-4氨基苯氧基苯基)芴,并对其熔点、红外、核磁表征。结构表明,该单体具较高的纯度,并且熔点较高。采用该二胺和双酚A型二酐聚合,合成了较高分子量的聚酰亚胺前驱体聚酰胺酸,通过热亚胺化和化学亚胺化得到了聚酰亚胺薄膜,通过红外(FT-IR)、特性黏度的测试,说明合成了含芴基及醚键的新型聚酰亚胺,同时从溶解度的测试结果来看,在有机溶剂中的溶解性较好。  相似文献   

7.
以4-三氟甲基苯甲醛和4-硝基苯乙酮为主要原料,设计经两步反应合成了一种含吡啶结构和三氟甲基侧基的芳香二胺———4-(4-三氟甲基苯基)-2,6-二(4-氨基苯基)吡啶,并将其与二(4-氯甲酰苯基)苯基氧化膦进行低温溶液缩聚制备了一种氟化含吡啶和氧化三苯膦结构的聚芳酰胺。采用FT-IR、DSC、TG及WAXD等方法对其进行了分析表征。结果显示,该聚芳酰胺的特性黏度为0.98 dL/g,具有非晶态结构及良好的透光率(截断波长为329 nm),其玻璃化转变温度(Tg)为291℃,在氮气氛中10%的热失重温度为540℃,800℃时的残炭率为64%。聚合物易溶于N,N-二甲基乙酰胺、N-甲基吡咯烷酮、间甲酚、吡啶和四氢呋喃等有机溶剂,并可浇注得到韧性好且透明的薄膜,其拉伸强度为86 MPa,拉伸模量为2.0 GPa,断裂伸长率为10%。同时,该聚合物的体积电阻、表面电阻和介电常数分别为8.62×1015Ψ·cm、9.85×1014Ψ和3.48(100 Hz),呈现出良好的电绝缘性能。  相似文献   

8.
以一种含间甲基取代新型杂萘联苯结构的芳香二胺:2-(4-氨基苯基)-4-[2-甲基-4-(4-氨基苯氧基)]-2,3-二氮杂萘-1-酮(MM-DA)为单体,制备出一类新型的杂萘联苯型聚芳酰胺,以FT-IR、1H-NMR证明了它的聚合物结构, 其特性粘度为1.72-2.08 dL.g-1,玻璃化转变温度为315-337℃,在氮气气氛中5%热失重温度高于440℃.聚芳酰胺在 DMAc、NMP等极性非质子溶剂中有良好的溶解性.聚芳酰胺膜的拉伸强度为81-99 MPa,断裂伸长率为11.4%-20.8%, 拉伸模量为1.91-2.34 GPa.扭曲非共平面结构的存在使该系列聚芳酰胺耐高温、具有良好的溶解性能和力学性能.  相似文献   

9.
一种新型含异丙基和大侧基联苯结构二胺单体3,3'-二异丙基-4,4'-二氨基苯基-4″-苯基甲苯(PAPT),与3种二酐通过Yamazaki膦酰化法缩聚制得3种聚芳酰胺薄膜。研究表明,聚合物具有良好的溶解性能,常温下能溶于N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)等溶剂;具有突出的热性能,玻璃化转变温度均高于209℃,氮气氛围下10%热失重温度高于465℃;光学性能优良,截止波长范围在317~338nm,透过率超过80%的波长都大于445 nm。  相似文献   

10.
以自制含三氟甲基取代不对称芳香二胺单体——1,4-双(4-氨基-2-三氟甲基苯氧基)-2,3,5-三甲基苯,分别与对苯二甲酸(PTA)、间苯二甲酸(IPA)、4,4-二苯醚二甲酸(OBA)3种商品化二酸单体,经Yamazaki膦酰化法缩聚制得到了一系列新型可溶性聚芳酰胺。该类聚合物的特性黏度在0.68~1.15dL/g之间,具有优异的溶解性能和光学性能。所制聚合物室温下不仅可以溶解在N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺等沸点较高的有机溶剂中,还能溶解在低沸点的四氢呋喃溶剂中;由该类聚合物所制得的薄膜无色透明,截断波长在331~345nm之间,500nm处的透过率均超过82%。此外该聚芳酰胺还表现出了良好的热学性能和力学性能:玻璃化转变温度在257℃以上,在空气和氮气中10%热失重时的温度分别在413℃和441℃以上;其薄膜的拉伸强度为77.5~88.4 MPa,断裂伸长率在13%~31%,杨氏弹性模量在1.8~2.0GPa。  相似文献   

11.
以新型的含间甲基取代杂萘联苯结构的二胺2-(4氨-基苯基)-4-[2甲-基-4-(4氨-基苯氧基)]-2,3-二氮杂萘-1-酮为单体,与2,6萘-二甲酸经溶液缩聚反应制备新型聚芳酰胺,以4,4二-苯醚二羧酸(OBBA)为第三单体对聚芳酰胺进行共缩聚改性,并研究了OBBA的含量及结构对聚芳酰胺性能的影响。当OBBA与NDA的摩尔配比为4∶6时共聚物黏度最大为1.82 dL/g。系列聚芳酰胺具有良好的溶解性,可溶于NM P、DM A c等极性非质子溶剂,玻璃化转变温度高于310℃,5%热失重温度大于445℃。  相似文献   

12.
以2,7-二硝基-9-芴酮和苯酚作为原料,通过两步反应合成了一种含羟基的圈形二胺单体2,7-二氨基-9,9-双(4-羟苯基)芴(BHPDAF)。将其与9,9-双(4-氨基苯基)芴(BAPF)和1,4,5,8-萘四甲酸二酐(NTDA)在间甲酚中进行无规共聚,通过控制两种二胺单体之间的摩尔比(BHPDAF/BAPF=1/2,1/1,2/1)合成了三种具有不同羟基含量的新型六元环聚酰亚胺共聚物[NTDA-BHPDAF/BAPF(1/2,1/1,2/1)]。这些聚酰亚胺共聚物在间甲酚、1-甲基吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAc)、二甲亚砜(DMSO)和γ-丁内酯(GBL)等有机溶剂中具有良好的溶解性。用溶液浇铸法制得了具有良好力学性能的薄膜,其拉伸强度为59.6M~70.2MPa,断裂伸长率为16.8%~26.6%。热重分析结果表明,这些聚酰亚胺共聚物膜的5%热失重温度(Td5)均超过480℃。气体分离性能测试结果表明,共聚物膜均具有良好的气体分离性能。例如:NTDA-BHPDAF/BAPF(2/1)薄膜在35℃和202kPa(膜两侧压差)条件下的CO  相似文献   

13.
王沛  刘建东  刘程  蹇锡高  李玉琦 《功能材料》2005,36(12):1954-1956
以一种甲氧基取代的新型含杂萘联苯结构的芳香二胺:2-(4-氨基苯基)-4-[3-甲氧基-4-(4-氨基苯氧基)苯基]-2,3-二氮杂萘-1-酮(OO-DA)为单体,采用Yamazaki体系,分别和3种芳香二酸进行溶液亲核缩聚反应,制得一类新型杂萘联苯型聚芳酰胺树脂,其特性粘度为0.89~1.03dL/g;以FT-IR1、H-NMR表征了聚合物的结构;利用DSC、TGA研究了聚合物的热性能,结果表明聚芳酰胺的玻璃化转变温度为281~307℃,氮气氛中5%热失重温度达440℃以上,800℃时残留质量>55%;在DMAC、NMP等极性非质子性溶剂中有良好的溶解性,所得聚酰胺膜的拉伸强度为69~93MPa,断裂伸长率8.65%~9.47%,拉伸模量1.49~1.78GPa,体积电阻率>1015Ω.cm。  相似文献   

14.
合成了9,9’-二(3-苯基-2,4-二氢-1,3-苯并噁嗪)芴(简称BFA)、9,9’-二(3-烯丙基-2,4-二氢-1,3-苯并噁嗪)芴(BFB)和大分子苯并噁嗪单体(BFC)。分别用核磁共振仪(1H-NMR)和红外光谱仪(FT-IR)对它们的结构进行了鉴定。差示扫描量热(DSC)对三种芴基苯并噁嗪的固化反应研究结果表明,它们的固化反应发生在180℃~280℃之间。三种单体的固化物都表现出很高的玻璃化转变温度,其中BFB的固化物的玻璃化温度已经超过300℃,BFA和BFC的玻璃化温度也分别达到202℃和263℃。它们在N2氛围中5%分解温度分别达到325℃、331℃和359℃,体现出较好的热稳定性。  相似文献   

15.
以9,9-双(4-氨基苯基)芴(BAF)为二胺,分别与6种二酐单体——均苯四甲酸二酐(PMDA)、3,3’,4,4’-二苯醚四甲酸二酐(ODPA)、3,3’,4,4’-二苯甲酮四甲酸酐(BTDA)、3,3’,4,4’-联苯四甲酸二酐(BPDA)、4,4'-(六氟异丙烯)二酞酸酐(6FDA)和1,2,3,4-环丁烷四甲酸二酐(CBDA),经室温溶液缩聚反应得到聚酰胺酸溶液,再经化学酰亚胺化反应得到芴基聚酰亚胺(PI)。采用红外光谱、差示扫描量热分析、热重分析、溶解性测试及气体分离性能测试等手段对PI的结构和性能进行了表征。所合成的PI在N-甲基吡咯烷酮(NMP)等强极性溶剂中均具有良好的溶解性,且表现出良好的热性能,玻璃化转变温度(Tg)均在300℃以上,芳香族PI的起始热分解温度也均超过500℃,经600℃热处理的芴基PI,表现出了较好的气体渗透性能,但PI-CBDA膜的气体通量最小。  相似文献   

16.
以3,3’,4,4’-二苯甲醚四甲酸酐(ODPA)为二酐单体,采用等摩尔分数的9,9’-二(4-氨基苯基)芴(BAFL)和3,4’-二氨基二苯醚(3,4’-ODA)、4,4’-二氨基二苯醚(4,4-’ODA)、1,3-双(4-氨基苯氧基)苯(1,3,4-APB)或1,4-二(4’-氨基苯氧基)苯(1,4,4-’APB)分别共聚制备含芴共聚聚酰亚胺(CPI)薄膜。对CPI薄膜进行FT-IR,DMTA,TGA和拉伸性能的测试。采用部分酰亚胺化的CPI薄膜与不锈钢黏结,制备单搭接黏结件,测试其室温及高温拉伸剪切强度,进而比较其黏结性能。结果表明,含芴CPI薄膜具有较好的力学性能和热性能。BAFL,3,4’-ODA与ODPA共聚所得CPI薄膜的黏结性能最好,室温拉伸剪切强度达到19.2MPa,250℃仍然可达13.4MPa。  相似文献   

17.
通过相转移界面缩聚的方法,将4,4’-二乙基-1,1’-二苯基苯酚(BHPP)和2,2-双(4-羟基苯基)丙烷(BP A)、对苯二甲酰氯(TPC)以及间苯二甲酰氯(IPC)进行共聚,合成了一系列不同酰氯比例的含乙基侧基的聚芳酯(PABAs)。利用核磁共振和傅里叶变换红外光谱对BHPP单体及PABA系列聚芳酯的结构进行了表征。差示扫描量热法和热重分析结果表明,聚合物具有良好的热性能,其玻璃化转变温度(T_g)为183.7~209.9℃,初始分解温度高于436℃。拉伸测试结果表明聚合物薄膜的拉伸强度大于60 MPa,力学性能优异。同时通过流变测试表明所得聚芳酯具有优良的熔体流动性,乙基侧基的引入使其熔融加工性能得到较大提升。  相似文献   

18.
联苯四羧酸二酐(BPDA)与4,4′-二氨基二苯醚(ODA)及自制的2,2′-对苯基双-(5-氨基苯并咪唑)(PBABI)在二甲基乙酰胺中共聚,成膜后进行热酰亚胺化,得到了含双苯并咪唑共聚酰亚胺薄膜,对其结构、热稳定性、力学性能及光学性能进行了研究。结果表明,PBABI杂环单体的引入对聚酰亚胺的热分解温度稍有影响,但明显提高了聚合物的玻璃化转变温度。随着杂环含量的增加,材料的拉伸强度和模量均有所提高,当二胺单体的物质的量比为9∶1时,其力学性能提高明显。  相似文献   

19.
采用1,2-二氢-2(-4-氨基苯基)-4-[4-(4-氨基苯氧基)-苯基]-二氮杂萘1-酮(A)、4,4'-二氨基二苯醚(B)、对苯二胺(C)共同作为共缩聚二胺单体,与对苯二甲酸采用Yamazaki膦酰化法,成功得到高分子量的共聚酰胺树脂,其特性粘度为0.79~2.10dL/g;以FT-IR表征了聚合物的结构;利用DSC、TGA研究了聚合物的耐热性能,结果表明该系列聚合物具有高的玻璃化转变温度(约300℃),氮气气氛中5%热失重温度在480℃以上,同时研究了聚合物的力学性能以及A在二胺单体中所占比例与聚合物溶解性的关系.部分聚合物可在N-甲基吡咯烷酮中溶解并浇注得到韧性薄膜.偏光显微镜观察表明大部分聚合物在一些极性溶剂中呈现溶致液晶织构.  相似文献   

20.
以4-(4-羟基苯基)-2,3-二氮杂萘-1-酮(DHPZ)、4-(3-烯丙基-4-羟基苯基)-2,3-二氮杂萘-1-酮(allyl-DHPZ)和2,6-二氟苯腈(DFBN)为单体,采用芳香亲核取代法,通过改变单体的物质的量配比,合成了系列可溶解可交联的聚芳醚腈(PAENs)。通过核磁共振测试证明了所合成的单体以及聚合物的结构,凝胶渗透色谱仪测定了聚合物的相对分子质量(珚Mw为45130~58403),红外光谱和差示扫描量热仪分析了聚合物的热交联反应过程。所合成的聚芳醚腈在室温时可溶于氯仿、二甲基乙酰胺、二甲基甲酰胺和甲基吡咯烷酮等极性有机溶剂,交联后的聚合物不溶于任何有机溶剂(凝胶含量最高达到98.6%),具有良好的热稳定性能(1%热失重为450℃)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号