首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《轻金属》2016,(5)
在碱性抛光液条件下,研究了过氧化氢抛光液体系下7003铝合金化学机械抛光行为。采用电化学分析方法分析了过氧化氢和十二烷基硫酸钠的协同作用机制,利用原子力显微镜观察抛光后的表面微观形貌。结果表明,低浓度H_2O_2能够加速铝合金表面氧化速度,促进材料的去除,同时能够减轻抛光后的表面橘皮缺陷;较高浓度H_2O_2能够在铝合金表面生成致密氧化膜,降低抛光速率。阴离子表面活性剂SDS能够通过吸附成膜减缓铝合金在H_2O_2介质下的腐蚀速率,当SDS的含量为1%时,缓蚀率达到88.56%,有效降低了抛光后的表面腐蚀,通过AFM检测抛光后的表面粗糙度降至13.9nm。  相似文献   

2.
张琳琪  夏琳  彭进  邹文俊 《表面技术》2014,43(4):24-26,36
目的研究pH值以及表面活性剂种类对CMP抛光液稳定性及抛光性能的影响。方法向硅溶胶中加入酸性或碱性pH值调节剂,配制不同pH值的CMP抛光液;通过添加不同类型的表面活性剂,研究表面活性剂对抛光液的稳定机理。结果硅溶胶CMP抛光液pH值为9.5时,加入非离子表面活性剂,抛光90 min后,铝合金表面粗糙度降低了55.4%,光亮度增加了131%,抛光质量较好。结论弱碱环境下,抛光液的稳定性和抛光性能优良,非离子表面活性剂有利于CMP抛光液的稳定性。  相似文献   

3.
目的 化学机械抛光(CMP)包含化学腐蚀和机械磨削两方面,抛光液pH、磨粒粒径和浓度等因素均会不同程度地影响其化学腐蚀和机械磨削能力,从而影响抛光效果。方法 采用30~150 nm连续粒径磨粒抛光液、120 nm均一粒径磨粒抛光液、50 nm和120 nm配制而成的混合粒径磨粒抛光液,分别对蓝宝石衬底晶圆进行循环CMP实验,研究CMP过程中抛光液体系的变化。结果 连续粒径磨粒抛光液中磨粒大规模团聚,满足高材料去除率的抛光时间仅有4 h,抛光后的晶圆表面粗糙度为0.665 nm;均一粒径磨粒抛光液中磨粒稳定,无团聚现象,抛光9 h内材料去除率较连续粒径磨粒抛光液高94.7%,能至少维持高材料去除率18 h,抛光后的晶圆表面粗糙度为0.204 nm;混合粒径磨粒抛光液初始状态下磨粒稳定性较高,抛光9 h内材料去除率较连续粒径磨粒抛光液高114.8%,之后磨粒出现小规模团聚现象,后9 h材料去除率仅为均一粒径磨粒抛光液的59.6%,18 h内材料去除率仅为均一粒径磨粒抛光液的87.7%,但抛光后的晶圆表面粗糙度为0.151 nm。结论 一定时间内追求较高的材料去除率和较好的晶圆表面粗糙度选用混合粒径磨粒抛光液,但需要长时间CMP使用均一粒径磨粒抛光液更适合,因此,在工业生产中需要根据生产要求配合使用混合粒径磨粒抛光液和均一粒径磨粒抛光液。  相似文献   

4.
目的研究硬质合金刀具材料化学机械抛光(CMP)机理,为改善硬质合金刀具表面质量提供理论支持。方法分析硬质合金刀具材料在酸性抛光液中的化学反应,研究硬质合金刀具材料CMP的化学反应机理。基于接触力学理论计算抛光垫与工件的实际接触面积和单个磨粒的实际切削面积,在运动学分析的基础上,建立硬质合金刀具材料CMP的材料去除率模型,通过实验验证材料去除率模型的有效性。结果在酸性抛光液中,硬质合金被氧化成Co_3O_4。当工件、抛光垫、磨粒类型、工件安装位置确定时,材料去除率与抛光载荷、磨粒浓度和抛光盘转速有关。常用硬质合金抛光条件下,抛光YG8刀具的修正系数Kcm为8.53,抛光后刀具的最低表面粗糙度能达到48nm,材料去除率为62.381nm/min,材料去除率的理论值和实验值的最大相对误差为13.25%,消除了表面缺陷,获得了较好的镜面效果。结论建立的材料去除率模型具有一定的有效性,对硬质合金刀具材料进行化学机械抛光能消除刀具的表面缺陷,改善表面质量。  相似文献   

5.
目的 为提高5083铝合金的表面质量,研制一种环境友好型化学机械抛光液,并分析5083铝合金化学机械抛光液对表面粗糙度的影响及作用机理。方法 使用绿色环保的化学机械抛光液对5083铝合金进行化学机械抛光。采用单因素控制变量法,分析不同的p H调节剂类型、p H值以及过氧化氢(H2O2)浓度对铝合金化学机械抛光后表面粗糙度的影响规律。采用电化学工作站,分析5083铝合金在不同抛光液中的静态腐蚀特性。运用X射线光电子能谱仪(XPS)分析5083铝合金在不同抛光液下表面元素化学组分的变化。结果 绿色环保抛光液的主要成分为去离子水、4%(质量分数)的二氧化硅磨粒、2.0%(质量分数)的H2O2和柠檬酸,并调节pH至3.0。5083铝合金进行化学机械抛光后,在70μm×50μm的扫描范围内铝合金表面粗糙度最低为0.929 nm。结论 电化学试验和XPS测试的分析表明,柠檬酸可加快抛光液对铝合金的腐蚀,H2O2使铝合金表面形成氧化层,减缓抛光液对铝合金的腐蚀。氧化层的主要成分为Al2O  相似文献   

6.
锇在磷酸体系抛光液中化学机械抛光研究   总被引:1,自引:0,他引:1  
(锇有可能作为大规模集成电路铜互连扩散阻挡层新材料。)利用自制的抛光液对金属锇片进行抛光,研究在双氧水-磷酸体系抛光液中H2O2浓度和抛光液pH值对抛光速率的影响。结果表明,当抛光液中主要成分仅为氧化剂H2O2时,并不能在金属锇表面达到好的腐蚀效果。在磷酸体系抛光液中,H2O2能够通过促进阴极反应的进行从而增强抛光液对金属锇的化学作用;低浓度H2O2通过增强抛光液对金属锇的化学腐蚀能力,从而增加了抛光速率值;较高浓度H2O2的加入对抛光速率值影响较小。H3PO4能够在抛光液中起到抑制剂、pH调节剂和络合剂的作用。当抛光液pH值为4.0时,金属锇表面生成的钝化膜最致密。当pH值为4.0或5.0时,金属锇表面生成的钝化膜OCP值大于金属锇的OCP值,且此条件下的抛光速率值较高。  相似文献   

7.
(锇有可能作为大规模集成电路铜互连扩散阻挡层新材料.)利用自制的抛光液对金属锇片进行抛光,研究在双氧水-磷酸体系抛光液中H2O2浓度和抛光液pH值对抛光速率的影响.结果表明,当抛光液中主要成分仅为氧化剂H2O2时,并不能在金属锇表面达到好的腐蚀效果.在磷酸体系抛光液中,H2O2能够通过促进阴极反应的进行从而增强抛光液对金属锇的化学作用;低浓度H2O2通过增强抛光液对金属锇的化学腐蚀能力,从而增加了抛光速率值:较高浓度H2O2的加入对抛光速率值影响较小.H3PO4能够在抛光液中起到抑制剂、pH调节剂和络合剂的作用.当抛光液pH值为4.0时,金属锇表面生成的钝化膜最致密.当pH值为4.0或5.0时,金属锇表面生成的钝化膜OCP值大于金属锇的OCP值,且此条件下的抛光速率值较高.  相似文献   

8.
为提高化学机械抛光的加工效果,我们研究了pH值、氧化剂种类和氧化剂含量对材料去除率和表面粗糙度的影响。结果表明:不同氧化剂的抛光液在各自的最佳pH值时达到最大的材料去除率,分别为181 nm/min(H2O2抛光液,pH=9),177 nm/min(Cr2O3抛光液,pH=11),172 nm/min(Na2Cr2O7抛光液,pH=11)和147 nm/min(NaClO抛光液,pH=13);抛光液中氧化剂含量、pH值对抛光后不锈钢的表面粗糙度影响较小。其中,材料去除率较高的H2O2和Cr2O3可作为304不锈钢化学机械抛光碱性抛光液的氧化剂。   相似文献   

9.
以磨料白炭黑、氧化剂H2O2、有机碱三乙醇胺、分散剂聚乙二醇为原料,通过正交设计的方法配制一系列抛光液,通过四甲基氢氧化铵调节抛光液的pH值为12,然后在研磨抛光机上对铜片进行超声波精细雾化化学机械抛光(CMP)。对抛光盘转速与材料去除率的关系进行了研究,并对传统抛光和雾化抛光效果进行了对比。试验结果表明,分散剂、白炭黑、有机碱、氧化剂对抛光去除率的影响依次减弱。随着抛光盘转速的增加,雾化抛光的去除率经历了先缓慢增加、再急剧增加、后缓慢增加的变化过程。在同等的试验条件下,传统抛光的去除率为223 nm/min,铜片表面粗糙度为7.93 nm,雾化抛光去除率和铜片表面粗糙度分别为125 nm/min和3.81 nm;虽然去除率略有不及前者,但抛光液用量仅为前者的十几分之一。  相似文献   

10.
目的 高效快速获得紫外光辅助作用下碳化硅(SiC)化学机械抛光(Chemical mechanical polishing, CMP)的最佳加工参数。方法 根据化学作用与机械作用相平衡时达到最佳抛光条件的理论,通过电化学测试的方法探究抛光液pH值、过氧化氢(Hydrogen peroxide, H2O2)浓度、Fe2+浓度、紫外光功率等对基体表面氧化膜形成速率(化学作用)的影响;在最大氧化膜形成速率条件下,以材料去除率(Material removal rate, MRR)和表面粗糙度(Average roughness, Ra)为指标,通过调节抛光压力、抛光盘转速、抛光液流量等工艺参数,探究工艺参数对碳化硅加工过程中氧化膜去除速率(机械作用)的作用规律,寻求机械作用与化学作用的平衡点,获取紫外光辅助作用下SiC CMP的最佳工艺参数。结果 在pH值为3、H2O2的质量分数为4%、Fe2+浓度为0.4 mmol/L、紫外光功率为32 W时,化学作用达到最大值。在最大化学作用条件下,抛光压力、抛光盘转速、抛光液流量分别为38.68 kPa、120 r/min、90 mL/min时,化学作用与机械作用最接近于平衡点,此时材料去除率为92 nm/h,表面粗糙度的最低值为0.158 nm。结论 根据研究结果,电化学测试可以作为探究晶片表面氧化速率较高时所需加工参数的有效手段,进一步调节工艺参数,使化学作用速率与机械去除速率相匹配,高效地获得了材料去除率和表面质量较高的晶片。  相似文献   

11.
为提高单晶硅化学机械抛光(chemical mechanical polishing,CMP)的表面质量和抛光速度,通过响应面法优化CMP抛光压力、抛光盘转速和抛光液流量3个工艺参数,结果表明抛光压力、抛光盘转速、抛光液流量对材料去除率和抛光后表面粗糙度的影响依次减小。通过数学模型和试验验证获得最优的工艺参数为:抛光压力,48.3 kPa;抛光盘转速,70 r/min;抛光液流量,65 mL/min。在此工艺下,单晶硅CMP的材料去除率为1 058.2 nm/min,表面粗糙度为0.771 nm,其抛光速度和表面质量得到显著提高。   相似文献   

12.
目的 采用对环境友好的抛光工艺来改善304不锈钢表面抛光质量。方法 基于化学机械抛光(CMP)工艺,采用主要成分为氧化铝(Al2O3)磨料、L-苹果酸、过氧化氢(H2O2)、乳化剂OP-10、甘氨酸的绿色环保抛光液,设计并试验了pH值,H2O2、乳化剂OP-10、甘氨酸质量分数的4因素4水平CMP正交试验。采用极差法分析了4个因素对表面粗糙度和材料去除率的影响。采用电化学工作站,通过动电位极化曲线法,分析304不锈钢在不同抛光液环境下的静态腐蚀特性。通过X射线光电子能谱(XPS),分析304不锈钢在不同抛光液环境下的表面元素和化学组分变化。结果 开发了一种不含任何强酸、强碱等危化物品的新型环保化学机械抛光液。通过绿色CMP加工,在70μm×50μm范围内将304不锈钢平均表面粗糙度从CMP前的7.972 nm降至0.543 nm。与之前报道的304不锈钢抛光相比,绿色CMP抛光后的表面粗糙度最低。通过正交试验,得到了绿色CMP加工的最优抛光液参数:pH=3...  相似文献   

13.
目的 研究苯甲酸钠、酒石酸钠、柠檬酸钠、甘氨酸等缓蚀剂在镁合金化学机械抛光(CMP)中的缓蚀作用。方法 用苹果酸、氧化铝磨粒、去离子水及不同缓蚀剂配制不同种类的抛光液。在抛光垫的种类、抛光盘转速、抛光液流速、p H调节剂的种类等都相同的条件下,进行化学机械抛光试验。用3D白光干涉轮廓仪对抛光后的镁合金片进行表征,通过电化学腐蚀试验、X射线光电子能谱(XPS)分析缓蚀机理。结果 通过对比试验发现,酒石酸钠和苯甲酸钠在酸性条件下的缓蚀效果最佳。酒石酸钠和苯甲酸钠均通过促进抛光液中溶解氧对镁合金表面的氧化作用形成钝化膜,从而抑制镁合金的进一步腐蚀。镁合金在含有苯甲酸钠的溶液中生成的钝化膜的腐蚀抑制性高于含有酒石酸钠的溶液中形成的钝化膜。苯甲酸钠和酒石酸钠均参与钝化膜的生成,但经XPS分析,镁合金经含有苯甲酸钠溶液浸泡后形成的表面膜中的镁含量少于经含有酒石酸钠溶浸泡后钝化膜中的镁含量。经电化学腐蚀试验发现,镁合金在含苯甲酸钠的溶液中的腐蚀电位正向移动量大于镁合金在含酒石酸钠的溶液中腐蚀电位的正向移动量,证明在相同浓度的前提下,苯甲酸钠的缓蚀效果优于酒石酸钠。结论 在酸性条件下,苯甲酸钠的缓蚀效...  相似文献   

14.
抛光垫特性对硬质合金刀片CMP加工效果的影响   总被引:1,自引:1,他引:0  
毛美姣  吴锋  胡自化 《表面技术》2017,46(12):270-276
目的研究不同种类的抛光垫对硬质合金刀片表面化学机械抛光(Chemical Mechanical Polishing/Planarization,CMP)加工过程的影响,为实现硬质合金刀片高效精密CMP加工提供有效参考。方法利用Nanopoli-100智能抛光机,通过自制的Al2O3抛光液,分别采用9种不同种类的抛光垫对牌号为YG8的硬质合金刀片进行CMP实验,将0~40、40~80、80~120 min三个加工阶段获得的材料去除率和表面粗糙度进行对比,同时观察最佳的表面形貌,分析抛光垫特性对CMP加工效果的影响。结果在抛光转速60 r/min,抛光压力177.8 k Pa的实验条件下,9种不同类型的抛光垫中仅有5种适合用于YG8硬质合金CMP加工。而且抛光垫的表面粗糙度在YG8刀片CMP加工过程中的影响最为显著,抛光垫表面粗糙度越高,CMP加工的材料去除率越高。此外,抛光垫的使用时间对CMP过程也有影响,抛光垫使用时间越长,CMP的材料去除率越小。结论 YG8硬质合金刀片经5种不同类型抛光垫CMP加工后,其表面的烧伤、裂纹等缺陷均得到了极大改善。当使用细帆布加工40 min时,材料去除率最高,为47.105 nm/min;当使用细帆布加工80min时,表面粗糙度最低,为0.039μm。  相似文献   

15.
化学机械抛光中抛光垫的研究   总被引:7,自引:1,他引:7  
抛光垫是化学机械抛光(CMP)系统的重要组成部分。它具有贮存抛光液,并把它均匀运送到工件的整个加工区域等作用。抛光垫的性能主要由抛光垫的材料种类、材料性能、表面结构与状态以及修整参数等决定。本文介绍CMP过程常用的抛光垫材料种类、材料性能、表面结构,总结了抛光垫的性能对CMP过程影响规律,认为:抛光垫的剪切模量或增大抛光垫的可压缩性,CMP过程材料去除率增大;采用表面合理开槽的抛光垫,可提高材料去除率,降低晶片表面的不均匀性;抛光垫粗糙的表面有利于提高材料去除率。对抛光垫进行适当的修整可以增加抛光垫表面粗糙度、使材料去除率趋于一致。与离线修整相比较,在线修整时修整效果比较好。  相似文献   

16.
路家斌  熊强  阎秋生  王鑫  廖博涛 《表面技术》2019,48(11):148-158
目的为了探究紫外光催化辅助抛光过程中,化学反应速率对SiC化学机械抛光的影响规律。方法通过无光照、光照抛光盘和光照抛光液3种光照方式,研究紫外光催化辅助作用对单晶SiC抛光过程中材料去除率的影响。测量不同条件下光催化反应过程中的氧化还原电位(ORP)值,来表征光催化反应速率,并进行了单晶SiC的紫外光催化辅助抛光实验,考察光催化反应速率对抛光效果的影响规律。结果实验表明,引入紫外光催化辅助作用后,材料去除率提高14%~20%,随着材料去除率的增加,光催化辅助作用对材料去除率的影响程度变小。光照射抛光液方式的材料去除率明显高于光照射抛光盘。不同条件下的抛光结果显示,化学反应速率越快,溶液的ORP值越高,材料去除率越大,表面粗糙度越低。在光照抛光液、H_2O_2体积分数4.5%、TiO_2质量浓度4 g/L、光照强度1500 mW/cm~2、pH=11的条件下,用W0.2的金刚石磨料对SiC抛光120 min后,能够获得表面粗糙度Ra=0.269 nm的光滑表面。结论在单晶SiC的紫外光催化辅助抛光过程中,光催化反应速率越快,溶液ORP值越高,抛光效率越高,表面质量越好。在H_2O_2浓度、TiO_2浓度、光照强度、pH等4个因素中,对抛光效果影响最大的是H_2O_2浓度,光照强度主要影响光催化反应达到稳定的时间。  相似文献   

17.
采用化学机械抛光(CMP)的方法,使用自主研发的氧化铝抛光液作为研磨介质,通过对硒化锌(ZnSe)晶片进行抛光实验,得出了氧化铝磨粒的粒度尺寸、抛光液的pH值、氧化剂种类及质量分数对ZnSe晶片表面状态和去除率的影响。实验结果表明:氧化铝抛光液适宜ZnSe晶片的抛光,采用质量分数15%的氧化铝抛光液(氧化铝粒度尺寸200 nm),加入质量分数3%的次氯酸钠浸泡24 h,抛光液的pH值为8,试验结果较佳,此时去除率可达2 μm/min,晶片表面平整无划痕,表面质量较理想。   相似文献   

18.
研究了抛光液中H2O2和水杨酸浓度对钌的抛光速率的影响。采用电化学方法和X射线光电子能谱分析了H2O2和水杨酸对金属钌腐蚀效果的影响;采用原子力显微镜观察钌表面的微观形貌。结果表明:水杨酸浓度的增加有利于金属钌表面钝化膜的形成,抛光速率值随之增加;随着H2O2浓度的不断增加,抛光速率不断增加,当H2O2质量分数大于3%时,抛光速率值随浓度的增加而降低。抛光后的金属钌表面平均粗糙度Ra为7.2 nm。  相似文献   

19.
为提高316L不锈钢化学机械抛光(chemical-mechanical polishing,CMP)效率,针对络合剂类型对316L不锈钢加工效果的影响及影响机制进行研究。以材料去除率(material removal rate,MRR)和表面粗糙度(Ra)为指标,探究络合剂类型(甘氨酸、草酸和柠檬酸)及浓度对抛光效果的影响。利用电化学工作站、接触角测量仪和X射线光电子能谱仪(XPS)分析络合剂对316L不锈钢CMP加工影响机制。结果表明:当甘氨酸质量分数为0.2%时,能够同时获得较高的材料去除率和较低的Ra,分别为210 nm/min和1.613 nm。高浓度的络合剂对316L不锈钢材料去除率的抑制作用来源于络合剂增强了316L不锈钢表面耐蚀性,降低了表面氧化速度。XPS分析表明部分甘氨酸络合物会吸附于316L不锈钢表面产生缓蚀作用。   相似文献   

20.
目的提高2024-T3铝合金在中性Na Cl溶液中的耐小孔腐蚀性能。方法采用动电位极化曲线测试、扫描电镜(SEM)观察并结合X射线光电子能谱(XPS)等方法,研究2024-T3铝合金在含不同浓度Na2Sn O3的0.1 mol/L Na Cl溶液中的电化学腐蚀行为,分析Na2Sn O3及其浓度对2024-T3铝合金小孔腐蚀和均匀腐蚀的作用。结果电化学测试结果显示,添加一定量(0.05~0.4 g/L)的Na2Sn O3可以使溶液的p H值升高(可从6.6上升至10.1),促进铝合金表面发生钝化,使铝合金孔蚀电位Eb和自腐蚀电位Ecorr的差值增大(最大可达到600 m V),因此降低了铝合金的孔蚀敏感性,提高了其耐小孔腐蚀的能力。但是Na2Sn O3质量浓度较大(0.2、0.4 g/L)时,会促进2024-T3铝合金的均匀腐蚀。SEM和XPS结果显示,小孔及其附近区域Cu含量较多,并有大量的Sn O2颗粒沉积。结论少量(0.05、0.1 g/L)的Na2Sn O3对2024-T3铝合金的小孔腐蚀和均匀腐蚀均具有较好的抑制效果。Na2Sn O3对2024-T3铝合金的缓蚀作用可能源于其水解产生的Sn O2优先在铝合金表面的金属间颗粒(S相)周围发生沉淀,从而屏蔽了铝合金表面的活性点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号