首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以3,3′-二胺基-4,4′-氧化偶氮呋咱(AOF)为原料,经纯硝酸硝化得到3,3′-二硝胺基-4,4′-氧化偶氮呋咱(NOF)。通过复分解反应与多氮阳离子(碳酰肼(CBH)、氨基胍(AG))结合得到了两种新的含能离子盐—3,3′-二硝胺基-4,4′-氧化偶氮呋咱碳酰肼盐(NOF-CBH)和3,3′-二硝胺基-4,4′-氧化偶氮呋咱氨基胍盐(NOF-AG)。通过1H NMR、13C NMR、IR及元素分析表征了化合物的结构。用TG-DTG研究了化合物的热行为。采用量子化学方法对比研究了NOF及其阴离子NOF2-的几何构型。预估了化合物的爆轰性能。结果表明,NOF-CBH和NOF-AG的初始分解温度分别为144.9,151.6 ℃,高于NOF的90 ℃。NOF-CBH和NOF-AG的标准摩尔生成焓分别为515.86 kJ·mol-1和815.96 kJ·mol-1,密度分别为1.82 g·cm-3和1.75 g·cm-3,理论爆速均大于8500 m·s-1。  相似文献   

2.
许诚  毕福强  张敏  葛忠学  刘庆 《含能材料》2015,23(2):199-201
以二氨基呋咱(DAF)为原料,经氧化、硝化、复分解反应,合成出3,3'-二硝胺基-4,4'-偶氮呋咱二胍盐(G2DNAAF),总收率为64%。采用核磁共振谱、红外光谱、元素分析和X-射线单晶衍射分析对其结构进行了表征。结果表明:G2DNAAF属于单斜晶系,空间群P2(1)/n,a=5.226(2),b=12.686(5),c=11.944(5),α=90°,β=92.896(7)°,γ=90°,V=790.8(5)3,Z=2,D-1c=1.698 g·cm-3,μ=0.148 mm,F(000)=416。差示扫描量热分析表明G2DNAAF的热分解峰温为259.0℃。Gaussian 09和KamletJacbos公式计算结果表明,G2DNAAF的固相生成焓为588.27 kJ·mol-1,爆速为7.839 km·s-1,爆压为26.81 GPa。  相似文献   

3.
以3,4-二氨基呋咱为原料,经过中间体3-氨基-4-甲酰胺基呋咱或3,4-二甲酰胺基呋咱,以1,4-二氧六环为溶剂,30%双氧水为氧化剂,加热回流4 h,得到产物3,3′-二氨基-4,4′-氧化偶氮呋咱(DAOAF),产率分别为97%或89%。并通过1H NMR、13C NMR、IR和EI对产物进行了表征。   相似文献   

4.
以3,3'-二氰基-4,4'-偶氮呋咱为原料,经加成、重氮化以及硝化等反应得到3,3'-二(偕二硝基甲基)-4,4'-偶氮呋咱(4)及其钾盐(3),四步反应的收率分别为93.3%、91.2%、24.5%和63.1%。在反应过程中分离得到一种未见报道的呋咱化合物——3,3'-二偕氨肟基-4,4'-联氨呋咱(1),推测在羟氨与氰基发生加成反应的过程中,过量羟氨同时将偶氮基还原为联氨基,从而生成1。通过~1H NMR、~(13)C NMR、IR以及质谱等手段对反应中间体及产物结构进行表征。利用差示扫描量热法-热重法研究1、3和4的热分解过程,结果表明:1的热分解包括一个脱结晶水吸热过程和两个热分解放热过程,热失重率分别为5.1%、53.5%和36.3%,吸热峰温为83.7℃,放热分解峰温分别为241.1℃和336.2℃;3的热分解过程仅有一个明显的分解放热阶段,热失重率为86.6%,峰值温度为258.1℃;4的热分解过程也仅有一个明显的分解放热阶段,热失重率为71.8%,其峰值温度为156.0℃。  相似文献   

5.
利用3,4-双(3'-氨基呋咱-4'-基)呋咱(BATF)和2,2-二甲基-5-硝基-5-亚硝基-1,3-二氧环己烷(DMNNDO)为原料,经氧化偶联、水解、溴化、还原和硝化五步反应首次合成新型含能化合物3,3'-双(二硝甲基-ONN-氧化偶氮基)三呋咱(BDNAF),通过红外(IR)、核磁(NMR)和元素分析(EA)对中间体和目标化合物进行结构表征.利用差示扫描量热法(DSC)研究了中间体3,3'-双(单硝甲基-ONN-氧化偶氮基)三呋咱(BNAAF)和目标化合物BDNAF的热行为;采用Gaussian 09程序和Explo 5(v.6.04)预估了BNAAF和BDNAF的物化及爆轰性能.结果表明:BNAAF没有熔点,热分解峰温为106.4℃,理论密度为1.82 g·cm-3,爆速为8298 m·s-1,爆压为29.0 GPa;BDNAF的熔点为95.4℃,第一分解峰温为170.5℃,理论密度为1.91 g·cm-3,爆速为9005 m·s-1,爆压为35.9 GPa,可作为一种新型熔铸炸药.  相似文献   

6.
以3,3'-双[单硝甲基-ONN-氧化偶氮基]氧化偶氮呋咱为原料,经过硝化,二次硝化两步反应合成了3,3'-双[三硝甲基-ONN-氧化偶氮基]氧化偶氮呋咱(BTNAF),总收率为68.7%;首次利用示差扫描量热法(DSC)研究了BTNAF的热行为,其熔点为59~61℃,分解温度为183.6℃,放热量为1989J·g~(-1);通过高斯计算,对比了BNMAF,BDNAF和BTNAF的物化性能和爆轰性能,结果表明,BDNAF(爆速9560m·s~(-1),爆压42.40GPa)和BTNAF(爆速8944m·s-3,爆压38.48GPa)是潜在的性能突出的含能化合物。  相似文献   

7.
建立了3,3'-二氨基-4,4'-氧化偶氮呋咱(DAOAF)的高效液相色谱分析方法,采用质谱对其中含有的杂质进行了表征。结果表明,优化后的色谱条件为:Zorbax SB-C18(250 mm×4.6 mm,5.0μm)柱;流动相乙腈/水(体积比为40/60);流速0.8 m L·min~(-1);柱温25℃;UV检测波长为230 nm。进样体积10μL。在优化色谱条件下,DAOAF和其中的杂质得到有效分离。DAOAF在10.02~100.20 mg·L~(-1)质量浓度范围内,DAOAF校准曲线的线性关系良好,线性相关系数为0.9990。DAOAF中的主要杂质为二氨基乙二肟、3,4-二氨基呋咱和3,3'-二氨基-4,4'-偶氮呋咱。该方法灵敏度高,重现性好,可用于DAOAF产品中有关物质的检测分析。  相似文献   

8.
为了考察多硝甲基氧化偶氮呋咱含能衍生物的爆轰与安全性能,基于密度泛函理论的B3LYP方法,在6-31G**基组水平上,对比研究了硝基氧化偶氮、三硝甲基氧化偶氮及氟二硝甲基氧化偶氮三种含能基团对呋咱、偶氮呋咱、氧化偶氮呋咱及呋咱醚的几何构型、静电势分布、密度、生成焓、氧平衡、爆速、爆压、键离解能以及撞击感度的影响。结果表明,三硝甲基氧化偶氮基团与氟二硝甲基氧化偶氮基团均可大幅提高呋咱衍生物的密度和氧平衡,氟二硝甲基氧化偶氮基团还可大幅提高呋咱衍生物的爆速和爆压,且具有良好的热稳定性和撞击感度特性。基于12种呋咱含能衍生物理论计算结果,筛选出一种高能量密度化合物:3,3′-双(氟二硝甲基氧化偶氮基)-4,4′-氧化偶氮呋咱,其密度为2.019g·cm~(-3)、爆速为9.735km·s~(-1)、爆压为44.90GPa、特性落高为36cm。  相似文献   

9.
以乙二醛为原料,经过中间体二(4-氨基呋咱基-3-氧化偶氮基)偶氮呋咱(ADAAF),合成了高能材料二(4-硝氨基呋咱基-3-氧化偶氮基)偶氮呋咱(ADNAAF)。用红外、核磁、质谱等表征了其结构。分析了在溴酸钾和冰乙酸的氧化体系下合成中间体ADAAF的影响因素,确定最佳工艺条件为:反应温度50℃,反应时间16 h,冰乙酸与3,3'-二氨基-4,4'-氧化偶氮呋咱(DAOAF)摩尔比为68∶1,收率为58.5%。采用差示扫描量热法和热重分析研究了ADNAAF和ADAAF的热性能。结果表明,ADAAF的分解温度为267.18℃,热重变化范围50~500℃,共失重90.91%;ADNAAF的分解温度为114.81℃,热重变化范围70~500℃,共失重100%。对ADNAAF的爆轰性能进行了理论预测,爆速,爆压分别为9140 m·s-1和38 GPa,是一种具有潜在应用价值的高能量密度化合物。  相似文献   

10.
以3,4-双(3'-氨基呋咱-4'-基)呋咱(BATF)为原料,经氧化反应合成了未见文献报道的含能化合物双3,3'-偶氮双(3-氨基三呋咱)(ABATF),收率82%;采用红外、核磁、质谱以及元素分析等对目标化合物进行了表征;确定了氧化反应的最佳条件为加料时间20~30 min,BATF和KMn O4摩尔比1∶1,反应温度50℃;采用差示扫描量热法和热重-微商热重研究了ABATF的热行为,其最大放热峰温为295.5℃。通过Gaussian 09程序和VLW状态方程计算了ABATF的物化和爆轰性能,其密度为1.765 g·cm-3、爆速8250 m·s-1、生成焓1626.6 k J·mol-1、爆压为29.4 GPa、爆热为6350 J·g-1,综合性能优于BATF。  相似文献   

11.
1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐的合成及性能   总被引:2,自引:2,他引:0       下载免费PDF全文
以1-氨基-2-硝基胍和4-硝胺基-1,2,4-三唑为原料,制备了一种新型含能离子盐——1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐,并优化了反应条件。用TG-DSC研究了其热分解行为。结果表明,在反应时间为4h,反应温度为50℃的优化合成条件下,1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐的产率最高为86.5%。该化合物在175.5℃左右剧烈分解,显示热稳定性较好。利用BornHaber循环求得该化合物的生成热为551.3kJ·mol-1。测得该化合物的密度为1.59g·cm-3。基于密度和生成热,通过Kamlet-Jacobs公式得到该化合物的爆速和爆压分别为8.05km·s-1和爆压26.6GPa。  相似文献   

12.
以乙二酸和氨基胍碳酸氢盐为原料,通过成环、硝化、成盐反应合成了5,5'-二硝胺基-3,3'-联-1,2,4-三唑碳酰肼盐(CBNT)。采用红外光谱、核磁共振谱、元素分析表征了其结构。采用差热分析-热重法(DTA-TG)研究了CBNT的热行为,并测试了其撞击感度和摩擦感度。结果表明,CBNT的放热分解峰的温度为229℃,它的撞击感度H_(50)为89 cm,摩擦感度(爆炸百分数)为4%~8%。  相似文献   

13.
何乃珍  索志荣  郭蓉  张勇  刘如沁 《含能材料》2016,24(12):1183-1187
采用TG-DTG和DSC研究了3,3'-二氨基-4,4'-氧化偶氮呋咱(DAOAF)的热分解行为,运用Kissinger法和Flynn-Wall-Ozawa法计算了DAOAF的热分解动力学参数;利用DSC仪的连续比热容测定模式测定了DAOAF的比热容;根据比热容与热力学函数关系,计算了DAOAF以298.15 K为基准的热力学函数在253~373 K温区的焓、熵和吉布斯自由能函数值。结果表明,DAOAF是一种熔融分解型含能材料,DAOAF热分解的平均活化能和指前因子分别为152.23 kJ·mol~(-1)和1012.53s~(-1)。得到比热容随温度变化的关系式cp(J·g~(-1)·K~(-1))=0.00303T+0.17235(253 KT373 K),298.15 K时DAOAF的标准摩尔热容为228.05 J·mol~(-1)·K~(-1)。  相似文献   

14.
硝基呋咱/CMDB推进剂能量特性   总被引:1,自引:1,他引:0  
根据最小自由能法,采用NASA-CEA软件,研究了六种硝基呋咱化合物:3-硝基呋咱(NF)、3,4-二硝基呋咱(DNF)、3-硝氨基-4-硝基呋咱(NNF)、3-硝氨基-4-硝基呋咱铵盐(ANNF)、3-硝氨基-4-硝基呋咱肼盐(HNNF)和3-硝氨基-4-硝基呋咱羟胺盐(HANNF)的能量特性。研究了硝基呋咱化合物含量对复合改性双基(CMDB)推进剂能量特性的影响和压强对硝基呋咱/CMDB推进剂能量特性的影响。结果表明,HANNF和HNNF单元推进剂的比冲高于RDX,分别为2744.8 N·s·kg-1和2802.2 N·s·kg-1。六种硝基呋咱化合物使CMDB推进剂的比冲大幅提高,其中HNNF和HANNF使CMDB推进剂的比冲分别提高74.6 N·s·kg-1和91 N·s·kg-1。六种硝基呋咱/CMDB推进剂的比冲均随压强升高而增加。比冲受压强影响顺序为DNFNNFHANNFANNFHNNFNF。  相似文献   

15.
以3,4-双(4'-硝基呋咱-3'-基)氧化呋咱(BNFF)为原料,合成9种不同取代基的双呋咱并[3,4-b:3',4'-f]氧化呋咱并[3″,4″-d]氮杂环庚三烯(a~i),探究了成环反应的SN2机理,并采用核磁、红外、质谱等对其进行了表征。将7-(2-氨基-1-乙基)-双呋咱并[3,4-b':4'-f]氧化呋咱并[3″,4″-d]氮杂环庚三烯(c)与2,4-二硝基氯苯、2,4,6-三硝基-3-氨基氯苯反应合成出两种未见文献报道的化合物,N-(2',4'-二硝基苯基)-和N-(3'-氨基-2',4',6'-三硝基苯基)-7-(2-氨基-1-乙基)-双呋咱并[3,4-b':4'-f]氧化呋咱并[3″,4″-d]氮杂环庚三烯(j和k),通过差示扫描量热法研究这两种物质的热性能,结果表明,化合物j的第1、2阶段热分解放热峰分别为258.03℃和329.92℃,化合物k的第1、2阶段放热峰分别为275.35℃和360.24℃,表明多硝基苯基的引入可提高含能化合物的热稳定性。理论预测了其爆轰性能:j的理论密度、爆速、爆压分别为1.68 g·cm-3、6945 m·s-1、21 GPa,k为1.74 g·cm-3、6438 m·s-1、18 GPa。  相似文献   

16.
以3,4-二氨基呋咱为原料,合成得到呋咱基大环化合物3,4:7,8:11,12:15,16-四呋咱基-1,5,9,13-四偶氮环十六烷(TATF)和3,4:7,8:11,12:15,16-四呋咱-1,9-二氧化偶氮-5,13-二偶氮环十六烷(DOATF),以核磁、红外、质谱、元素分析鉴定了其结构.计算得出两个大环呋咱化合物的标准生成焓分别为4526.0 kJ·kg-1和4144.2 kJ·kg-1,计算爆速分别为8150 m·s-1和8180 m·s-1, 爆压分别为29.5 GPa和29.2 GPa.分别以TATF和DOATF取代NEPE复合固体推进剂中的20%HMX,计算得出推进剂的比冲分别为252.5 s和276.2 s.  相似文献   

17.
3,3′-二氨基-4,4′-偶氮呋咱及其氧化偶氮呋咱的合成   总被引:5,自引:4,他引:1  
新型钝感高能量炸药3,3′-二氨基-4,4′-偶氮呋咱(DAAF)和3,3′-二氨基-4,4′-氧化偶氮呋咱(DAOAF)具有耐热性好,标准生成焓高、感度低、临界直径小、爆轰性能优良等许多优点.本文采用乙二醛、盐酸羟胺和氢氧化钠等为起始原料,通过四步反应分别以12.1%、19.5%的总收率合成出DAAF和DAOAF,其结构通过红外光谱、核磁共振氢谱和碳谱得到证实.并实验研究了DAAF和DAOAF的精制方法.  相似文献   

18.
为探索噁二唑硝胺化合物的水解反应行为和内在影响规律,采用量化计算方法对不稳定噁二唑硝胺化合物的自然键轨道(NBO)电荷分布和最低未占有分子轨道(LUMO)分布进行理论分析,发现硝胺基相连的碳中心具有LUMO轨道覆盖,为可能反应位点,而此位点的NBO电荷为分子中最高,通常达到0.7 a.u.左右,是导致水解反应易于发生的主要因素。基于此推论成功预测了5,5'-二硝胺基-3,3'-双(1,2,4-噁二唑)和2,2'-二硝胺基-5,5'-双(1,3,4-噁二唑)(ICM-1 01)两种化合物的水解反应。利用水解实验,获得了水解产物[3,3'-双(1,2,4-噁二唑)]-(4,4'-二氢)-5,5'-二酮和[2,2'-双(1,3,4-噁二唑)]-(4,4'-二氢)-5,5'-二酮,并完成了相应结构表征,明确了水解反应的发生位点,阐明了水解反应机理。利用唑类硝胺化合物的结构等效方法,提出了唑类硝胺化合物发生水解反应的难易顺序为:呋咱3-取代-1,2,4-噁二唑1,2,4-三氮唑1,3,4-噁二唑5-取代-1,2,4-噁二唑。  相似文献   

19.
以3-氨基-4-(四唑-5-基)呋咱为原料经氧化反应生成3,3′-二(四唑-5-基)-4,4′-偶氮呋咱(DTZAF),通过与有机铵盐酸盐发生复分解反应合成了四种新的含能衍生物,总收率分别为73.0%、70.3%、75.0%、76.3%,经IR、1H NMR、13C NMR及元素分析表征了其结构。采用TG-DSC-IR-MS联用仪分析了DTZAF热分解气相产物,采用差示扫描量热技术和热重分析法研究了DTZAF及其含能离子盐的热行为, 结果表明,低于200 ℃ DTZAF及其四种含能离子盐热稳定性良好。  相似文献   

20.
以乙二醛和盐酸羟胺为原料,经一步法合成中间体3,4-二氨基呋咱(DAF),收率48.0%,纯度99.8%。在NaHCO_3溶液缓冲体系中,DAF经过硫酸氢钾(KHSO_5·0.5KHSO_4·0.5K_2SO_4)氧化制得3,3'-二氨基-4,4'-氧化偶氮呋咱(DAOAF),采用IR、~1H NMR、MS等对其结构进行确证,通过高效液相色谱的面积归一化法测定产品纯度并定性、定量分析产品中所含杂质。考查了氧化反应中反应物投料比、反应时间与温度对收率的影响,获得最佳合成工艺为:n(DAF)∶n(NaHCO_3)∶n(KHSO_5·0.5KHSO_4·0.5K_2SO_4)=1∶6∶4,反应时间5 h,反应温度20~25℃,粗品收率为84.1%,纯度98.2%。粗品DAOAF经HPLC分析确定杂质为DAF、副产物DAAF和ANF。粗品于95℃经DMF重结晶可有效除去杂质,从而制得高纯DAOAF(纯度99.6%),总回收率为86.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号