首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
采用酸化水法提取紫甘薯中的花色苷,通过单因素试验研究了提取溶剂、温度、时间和料液比对紫甘薯花色苷提取量的影响,并对紫甘薯花色苷提取液在不同温度、pH、Na2SO3、糖类和光照条件下的稳定性进行了研究。研究结果表明,紫甘薯花色苷的最佳提取条件为:0.5%的盐酸水溶液作提取溶剂、温度60℃、料液比1∶20(g/mL)、时间1 h,在此条件下提取1次时花色苷含量达43.890 1 mg/100 g(鲜重)。紫甘薯花色苷不耐高温,在光照和蔗糖、麦芽糖、葡萄糖、果糖等条件下稳定性较高,但在Na2SO3及碱性条件下不稳定。  相似文献   

2.
焦岩  常影 《食品工业》2013,(8):27-29
研究紫洋葱皮花色苷在不同条件下的稳定性和抗氧化活性。在不同pH、温度、光照和金属离子条件下考察紫洋葱皮花色苷的稳定性,用体外抗氧化体系为模型,研究其对DPPH自由基的抗氧化活性。结果显示:pH为5时花色苷稳定性好;60℃以下稳定性良好;光照可促进花色苷分解;金属离子Zn2+、Cu2+、Ca2+对花色苷稳定性影响较大。抗氧化活性研究结果表明紫洋葱皮花色苷具有一定的清除DPPH自由基能力,其清除效果好于VC。  相似文献   

3.
以红树莓花色苷为研究对象,系统研究了光照、温度、pH、食品添加剂和金属离子对树莓花色苷稳定性的影响。结果表明,随加热温度的升高花色苷稳定性下降,在60℃以下花色苷稳定;室外自然光照花色苷不稳定,避光条件下稳定性良好;在pH1.0和pH3.0时花色苷稳定,pH5.0、7.0、9.0花色苷不稳定。食品添加剂苯甲酸钠和蔗糖使花色苷稳定性增加,抗坏血酸使花色苷稳定性降低。金属Al3+离子对花色苷具有增色效应,Al3+和Ca2+对花色苷稳定性无影响。  相似文献   

4.
研究微波辅助提取紫马铃薯花色苷的工艺条件和稳定性。用pH示差法对紫马铃薯中的花色苷含量进行测定。正交实验结果表明:微波辅助提取的优化条件:提取时间40s,微波功率480W,料液比1:70,提取溶剂酸度0.11%盐酸水溶液,提取液花色苷含量达到3.649mg/鲜紫马铃薯(g)。稳定性研究表明紫马铃薯花色苷具有较差的光稳定性和热稳定性,应避免光照和高温;氧化剂H2O2对其稳定性有较大的影响;在酸性条件下稳定性较好;金属离子和常用食品添加剂对紫马铃薯花色苷色素稳定性的影响较小。  相似文献   

5.
紫甘薯饮料中花青素的稳定性研究   总被引:1,自引:0,他引:1  
研究了不同pH值紫甘薯饮料中花青素的色泽光谱特性以及pH值、温度、抗坏血酸、糖、光照等因素对紫甘薯饮料中花青素稳定性的影响。结果表明,pH值为2.2、3.0、4.0时花青素较稳定,随着pH值的升高,稳定性逐渐降低;高温处理对紫甘薯花青素的稳定性的影响较显著,温度越高,花青素的保留率越低;抗坏血酸的加入会加速花色苷的降解;葡萄糖和乳糖的加入对花色苷的稳定性无影响;Fe与花青素类物质形成络合物,降低了花青素的稳定性,其他的金属离子对花色苷的稳定性影响不大;光照使花青素稳定性降低,自然光在短时间内影响较小,花色苷在白炽灯和紫外灯照射下降解速度加快。  相似文献   

6.
蓝莓花色苷稳定性研究   总被引:3,自引:0,他引:3  
蓝莓花色苷的稳定性受pH值、温度、添加剂、光照等诸多因素影响。文中分别在液态和固态条件下研究蓝莓花色苷的稳定性。结果表明:低pH值可增加蓝莓花色苷的稳定性,适量添加柠檬酸、苹果酸、醋酸,有利于花色苷的稳定。蓝莓花色苷在低温冷藏条件下稳定,在光照下不稳定,-20℃避光保存效果最佳。  相似文献   

7.
黑米花色苷降解特性研究   总被引:3,自引:2,他引:1  
为了解黑米花色苷在pH、光照及加热条件下的稳定性,明确其贮藏和应用条件,对黑米花色苷的降解特性进行研究.结果表明:常温条件下,黑米花色苷的水解平衡常数pKn约为3.0,pH 1.0~3.0适合色素液的保存.热降解符合动力学一级反应方程.黑米花色苷降解所需的活化能E(pH1.0)、E(pH 3.0)、E(pH4.5)分别为84.05,67.12,51.52 kJ/mol,低pH有利于黑米花色苷的保存.加热温度超过80℃,pH3.0时花色苷的热稳定性最好.温度越高,加热时间越长,黑米花色苷的热降解越快.黑米花色苷的光降解也符合动力学一级反应方程.强日光、自然光、避光条件对花色苷降解的影响有显著差异.pH越大,光照强度越强,光照持续时间越长,花色苷的降解越快.  相似文献   

8.
千日红花色苷的微生物法提取及稳定性研究   总被引:1,自引:0,他引:1  
徐忠  张海华  王航  聂芊 《食品科学》2007,28(7):125-130
采用微生物法提取千日红花色苷,研究了菌种、温度、pH值、固液比和处理时间对提取效果的影响,并探讨了在光照、酸度、氧化剂、还原剂、温度、糖及金属离子存在的条件下花色苷的其稳定性。结果表明,在可见光范围内千日红花色苷的最佳吸收波长为530nm,黑曲霉(Aspergillus niger)的提取效果优于康氏木霉(Trichoderma viride)、绿色木霉(Trichoderma koningi Oud.)。在花色苷稳定性研究中发现,光照、氧化剂、高温、Fe2+、Fe3+和Al3+存在的条件不利于花色苷的稳定,而在有还原剂存在的条件下,花色苷的稳定性增强。酸性或中性环境中,花色苷较稳定。糖、Zn2+和Ca2+对稳定性基本没有显著影响。  相似文献   

9.
为增强花色苷的稳定性,拓宽其在食品保健以及医药领域的应用,以羧甲基壳聚糖(CMCS)、L-组氨酸(L-His)和硬脂酸(SA)为载体材料,蓝靛果果渣花色苷为芯材,采用响应面法优化酸响应性蓝靛果果渣花色苷胶束的制备工艺,通过在光照、温度、pH等不同条件下蓝靛果果渣花色苷的稳定性以及其对肝癌细胞杀伤性进行评价。结果表明:经响应面优化的最佳制备工艺为水浴时间10 min,超声时间15 min,超声温度60℃,包封率为85.3%±0.31%。储存稳定性分析表明在各种温度、pH、光照、氧化剂、还原剂的条件下,载花色苷胶束中花色苷的保存率分别是花色苷的1.33、1.26、1.16、1.11、2.41倍;在体外肝癌细胞杀伤实验中,在24 h后,载花色苷胶束对肝癌细胞抑制率是花色苷的1.34倍。本研究合成了一种新型的两亲性羧甲基壳聚糖衍生物,可以显著提高花色苷稳定性,适宜作为花色苷以及其他食品活性成分的潜在纳米胶束载体。  相似文献   

10.
紫苏是我国传统的药食两用植物,因含有丰富的花色苷成分,具有广阔的产业发展前景。随着人们对天然色素日益增长的需求,紫苏叶花色苷将成为一个良好的天然色素来源。本文研究了pH、光照、温度等因素对紫苏叶花色苷稳定性的影响:紫苏叶花色苷不耐高温,在光照条件下比较稳定,然而长时间的光照也会对紫苏叶花色苷造成影响。pH对其影响显著,在pH2~4范围内相对稳定。大部分无色金属离子对紫苏叶花色苷的稳定性没有影响,而Cu2+、Fe3+对紫苏叶花色苷稳定性影响较大。除此之外,氧化还原剂、苯甲酸钠和VC对紫苏叶花色苷都有破坏作用。  相似文献   

11.
探究蛇莓果实花色苷在多种条件下的稳定性及降解动力学。采用pH示差法测定不同pH值、温度、光照强度、氧化剂、还原剂、金属离子对花色苷稳定性的影响。研究表明,不同pH条件下蛇莓果实花色苷热降解符合一级动力学模型,花色苷在强酸性条件下的稳定性高于弱酸和中性条件;蛇莓果实花色苷的热稳定性较差,随着环境温度升高,降解速率k增大,半衰期和递减时间D值缩短,pH值2.0时活化能最大为68.65 kJ/mol,pH值5.0时活化能最小为42.35 kJ/mol,其降解为吸热非自发反应;6 000 lx光照和H2O2均会加快蛇莓果实花色苷的降解,且花色苷在光照和H2O2条件下降解均符合一级动力学模型,在光照条件下的降解速率为 0.012 3 d-1,半衰期56.35 d,H2O2条件下降解速率随H2O2体积分数的升高而增大;质量分数0.20%的Na2SO3对蛇莓果实花色苷的降解有抑制作用;Na+、K+对蛇莓果实花色苷无影响,而Al3+、Cu2+、Fe3+可显著破坏蛇莓果实花色苷的稳定性。综上,蛇莓果实花色苷应尽量在酸性、低温、避光且无氧化剂及Fe3+的条件下生产加工,以避免大量降解。  相似文献   

12.
刺葡萄皮花色苷的光热降解特性研究   总被引:2,自引:0,他引:2  
为了解刺葡萄皮花色苷在光照及加热条件下的稳定性,明确其贮藏和应用条件,对刺葡萄皮花色苷的光热降解特性进行研究.结果表明:常温条件下,pH 1~3色素液花色苷稳定性较好;避光及室内自然光照条件下放置20 d内刺葡萄皮花色苷的稳定性无显著差异,但强光条件下,刺葡萄皮花色苷稳定性明显下降;刺葡萄皮花色苷热降解符合动力学一级反应规律,pH为1.0、3.0、4.5时,其热降解活化能Ea分别为99.385 6,83.364 5,73.741 9 kJ/mol,说明低pH条件下,刺葡萄皮花色苷的热稳定性较好,但pH 1.0色素液在≥80 ℃加热时的花色苷半衰期t1/2≤4.10 h,而pH 3.0、4.5色素液在同样加热条件下的t1/2≤14.12 h、13.20 h;高温处理(≥80 ℃)时,pH 3.0的色素液稳定性优于其余pH条件.  相似文献   

13.
姚蓓  赵慧芳  吴文龙  李维林 《食品科学》2017,38(11):142-147
本研究探讨了pH值、辅色剂、SO_2、微波对5个不同蓝莓品种(巴尔德温、巨蓝、园蓝、灿烂和安娜)花色苷色素稳定性的影响。结果表明,蓝莓色素在pH4.0时呈红色,且在pH 3.0条件下稳定性较强。不同辅色剂中以对羟基苯甲酸、苹果酸、柠檬酸、阿魏酸和单宁酸的辅色作用最强,其次是丁二酸、抗坏血酸和蔗糖,异抗坏血酸则具有显著的减色作用。丁二酸、蔗糖和单宁酸不仅具有辅色作用,而且能够增强花色苷的热稳定性。SO_2和微波处理对蓝莓色素具有破坏作用。在本研究条件下,通过综合分析得出5个蓝莓品种花色苷色素的稳定性由强及弱排序依次为巴尔德温、巨蓝、园蓝、灿烂和安娜。  相似文献   

14.
通过检测在紫玉米芯色素溶液中添加甘氨酸等几种有机酸后色素变化的动力学参数及其稳定性,探讨甘氨酸对紫玉米芯色素的辅色机理。结果表明:在pH5左右时甘氨酸辅色作用最明显,经过均匀实验条件优化,在色素质量浓度为0.96μg/mL、甘氨酸浓度为160mmol/L、Fe2+浓度为256mmol/L、温度75℃、pH值为5的条件下,10d后体系色素保存率为对照的1.49倍。甘氨酸对紫玉米芯色素的辅色机理主要是甘氨酸与花色苷发生了分子间相互作用,色素与甘氨酸以酯键结合后,活化能增加,从而提高了色素的稳定性。  相似文献   

15.
温度、pH值和光照对石榴汁花色苷稳定性的影响   总被引:3,自引:1,他引:2  
研究了温度、pH值、光照对石榴汁花色苷稳定性的影响。结果表明,石榴汁花色苷降解符合一级反应模型;石榴汁花色苷受热容易分解;pH值较低时,其稳定性高;在较高剂量日光灯照射下,其花色苷容易分解,在散射光和黑暗环境下花色苷降解趋势相近。  相似文献   

16.
以甜菜碱为氢键受体,有机酸、糖基和醇基分别为氢键供体制备天然绿色的低共熔溶剂,基于微波辅助提取法,通过单因素实验并结合响应面分析对紫马铃薯花色苷提取工艺进行优化。主要考察了微波时间、微波功率、溶剂含水量、溶剂摩尔比对紫马铃薯花色苷含量的影响。同时比较低共熔溶剂与常规溶剂提取对紫马铃薯花色苷在不同温度、光照条件下的稳定性,以及DPPH、ABTS+、OH自由基清除率评价体外抗氧化能力。结果表明,以甜菜碱和柠檬酸制备酸性低共熔溶剂,摩尔比1:2.1,含水量为28.6%,在微波功率800 W,微波时间28 s条件下,紫马铃薯花色苷含量可达到228.658±1.241 mg/100 g,较常规提取工艺含量提高了56.92%。此外通过低共熔溶剂提取所得花色苷在不同光照、温度条件下稳定性均显著提高。其中太阳光对紫马铃薯花色苷影响最大,避光情况下低共熔溶剂提取花色苷保存率可达90%以上,常规溶剂提取花色苷保存率为82.78%,此外,花色苷含量也随着温度的增加不断降低,二者保存率均明显下降。抗氧化能力结果表明,低共熔溶剂提取所得花色苷抗氧化能力更强,其清除自由基能力IC50值均小于...  相似文献   

17.
通过对影响浸泡杨梅酒花色苷稳定性的因素pH值、光照和温度进行研究,结果表明,浸泡杨梅酒在pH3.0时,花色苷较稳定;在避光环境下,花色苷降解速率较慢,在光照下容易分解。花色苷在浸泡型杨梅酒中高温60℃时降解速率快,在低温4℃时稳定。柠檬酸能降低杨梅酒pH值,使花色苷在浸泡型杨梅酒中稳定。  相似文献   

18.
以海藻酸钙为壁材,利用乳化凝胶化法制备黑米花色苷微胶囊,研究包被后黑米花色苷在高温、光照、p H条件下的稳定性,及其在模拟胃肠液中的释放性能。在海藻酸钠浓度为15 g/L,水油体积比为1∶3,壁芯比M(NaAlg)∶M(C3G)为1∶2,溶液p H值为4.5的工艺参数条件下制备的黑米花色苷微胶囊,在不同pH、温度、光照条件下的稳定性均显著高于未包被游离黑米花色苷,且在模拟胃液中能保持4h,在模拟肠液中壁材缓慢降解,释放出花色苷。基于乳化凝胶化原理的微胶囊包被技术,能提高花色苷的稳定性,实现其在体内的肠道递送和缓释。  相似文献   

19.
橙皮花色苷的分离鉴定及稳定性研究   总被引:1,自引:0,他引:1  
对橙皮花色苷的提取方法、鉴定和稳定性影响因素进行研究。通过盐酸乙醇提取橙皮花色苷,经纸层析分析其主要成分为矢车菊素。橙皮花色苷在低温和低pH条件下稳定性较好,光照能加快花色苷的降解,金属离子能增加花色苷的稳定性。  相似文献   

20.
目的:考察紫山药花色素苷的稳定性,为其进一步的开发和利用提供理论依据。方法:将紫山药浸膏经过大孔树脂分离纯化,以真空干燥后所得的粉末为原材料,考察紫山药花色素苷在不同波长下不同pH、温度、光照、氧化剂及还原剂、葡萄糖等条件下花色素苷的保存率。结果:紫山药花色素苷在常态下稳定性较差,受pH影响较大,其在酸性条件下较稳定,另外其在低温(4℃)下较为稳定,对光照、氧化剂和还原剂的敏感度高,葡萄糖对紫山药花色素苷起到明显的保护色泽的作用。结论:为了保证紫山药花色素苷的稳定性,应在低温避光环境保存,尽量避免和碱性试剂、氧化剂、还原剂接触。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号