首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
薇菜水不溶性膳食纤维提取工艺研究   总被引:1,自引:0,他引:1  
采用碱浸法提取薇菜中水不溶性膳食纤维。首先对影响碱法提取率的4个因素:料液比、碱液浓度、反应温度及提取时间进行了单因素实验,再通过正交实验确定了碱法最佳工艺条件。结果表明:料液比为1∶10、碱液浓度为0.5mol/L、碱浸温度为65℃、碱浸时间为1h,在此工艺条件下,薇菜水不溶性膳食纤维的提取率达到41.81%。  相似文献   

2.
以辽西扁杏仁皮为原料制备膳食纤维。对超声波提取参数进行优化,选取液料比、碱液浓度、浸提时间及浸提温度进行单因素实验。采用液料比、碱液浓度和浸提时间为变量,以SDF提取率为响应值,进行响应面实验设计,优化膳食纤维工艺条件。结果表明,最佳工艺参数为:液料比16.5:1,碱液浓度3.6%,浸提时间2.3h,浸提温度45℃;超声波辅助提取参数为:功率600W,处理时间15min。此条件下杏仁皮SDF与IDF提取率分别达到7.23%、38.97%。SDF持水性达到5.22g/g,溶胀性为4.37mL/g;IDF持水性为7.16g/g,溶胀性为5.43mL/g。杏仁皮膳食纤维具有良好的理化性能。  相似文献   

3.
以加工红参膏后的废弃物红参渣为原料,采用超声波辅助碱法提取不溶性膳食纤维,通过单因素试验考察了提取时间、提取温度、液固比、碱液浓度等4个因素对红参不溶性膳食纤维得率的影响,在单因素试验基础上,通过响应面分析对提取条件进行优化,确定最佳提取工艺。结果表明,超声波辅助碱法提取红参渣中不溶性膳食纤维的最佳工艺为:提取温度62℃,提取时间80 min,液固比24︰1 mL/g,碱液浓度1.1%。在此条件下,不溶性膳食纤维得率可达57.39%,表明该工艺可用于红参渣中不溶性膳食纤维的提取。  相似文献   

4.
以竹笋为原料,采用超声波处理法辅助提取竹笋中不溶性膳食纤维,以不溶性膳食纤维提取率作为考察指标。在颗粒粒径、液料比、超声功率、超声时间及超声温度五个单因素影响竹笋不溶性膳食纤维提取率的基础上,通过响应面分析法优化超声辅助提取竹笋不溶性膳食纤维的工艺。结果表明:在颗粒粒径60目、液料比43∶1 mL/g、超声功率454 W、超声时间25 min、超声温度72℃,在此条件下竹笋不溶性膳食纤维提取率为47.23%。  相似文献   

5.
响应面法优化火棘水不溶性膳食纤维提取工艺   总被引:1,自引:0,他引:1  
以火棘果为原料,采用碱水解法提取膳食纤维,通过单因素试验和响应面分析,探讨碱液质量分数、浸提时间、浸提温度和液料比对火棘水不溶性膳食纤维提取率和纯度的影响,并对提取工艺条件进行优化。结果表明,碱水解法提取火棘膳食纤维的最佳工艺条件为碱液质量分数1.00%、浸提时间3.00h、浸提温度77.8℃、液料比17:1(mL/g),在此工艺条件下水不溶性膳食纤维的提取率56.89%、纯度达到92.74%,表明该工艺可行。  相似文献   

6.
《广西轻工业》2018,(4):6-8
为了提高茭白的资源利用率和经济附加值,采用超声波酶法提取茭白不溶性膳食纤维。对料液比、水解时间、超声波功率、水解温度、加酶量进行单因素实验及正交试验分析。结果表明,超声波酶法提取茭白不溶性膳食纤维的最佳工艺为:超声波功率500Kw,水解时间15min,料液比1∶35,加酶量0.100g,水解温度60℃。经验证试验,得到茭白不溶性膳食纤维的提取率为45.321%。  相似文献   

7.
采用单因素分析法分析永川秀芽茶渣不溶性膳食纤维(IDF)提取工艺,选取碱液浓度、液料比、处理时间和处理温度四个因素,对碱提法关键因素进行优化,通过绘制折线图得到每个影响因素的3水平因子,设计L9(34)正交试验得出不溶性膳食纤维提取的最佳工艺条件。结果表明:永川秀芽茶渣的最佳工艺参数为碱液浓度0.5 mol/L、液料比30:1、处理时间75 min、处理温度50℃。在此条件下,不溶性膳食纤维得率为46.95%,为开发永川秀芽高附加值产品提供科学依据。  相似文献   

8.
以脱脂椰蓉为原料,采用超声波辅助碱法提取可溶性膳食纤维,研究料液比、碱液浓度、超声时间、超声温度对提取率的影响,优化工艺条件并对提取的椰蓉可溶性膳食纤维进行抗氧化活性研究。结果表明,超声波辅助碱法提取脱脂椰蓉可溶性膳食纤维的最佳工艺参数是:料液比1:30、碱液浓度7%、超声时间30 min、超声温度40℃,椰蓉可溶性膳食纤维提取率为12.23%。抗氧化性试验结果表明,椰蓉可溶性膳食纤维具有一定的抗氧化和还原力,对DPPH·和·OH清除率分别可达68.4%和61.2%。  相似文献   

9.
酱油渣水不溶性膳食纤维提取工艺研究   总被引:2,自引:0,他引:2  
以酱油厂生产酱油废渣为原料,研究采用碱处理法从酱油渣中提取水不溶性膳食纤维最佳工艺条件。结果表明,各因素对提取膳食纤维影响顺序为:碱浓度、提取温度、提取时间、料液比;最佳提取条件组合是碱浓度4%、提取温度60℃、提取时间60min、料液比16ml/g;在此工艺条件下,水不溶性膳食纤维提取率达32.37%,得到水不溶性膳食纤维持水力为5.65g/g,溶胀度为4.08ml/g。  相似文献   

10.
金盏花渣不溶性膳食纤维的提取   总被引:1,自引:0,他引:1  
以富舍不溶性膳食纤维的金盏花渣为原料,通过单因素实验和正交实验研究了化学法从金盏花渣中提取不溶性膳食纤维的工艺条件,测定了不溶性膳食纤维的性能.实验结果表明,提取金盏花渣不溶性膳食纤维的最佳工艺条件为碱液浓度1.3mol·L-1,料液比1:13(g/mL),提取时间110min,提取温度40℃.在此条件下不溶性膳食纤维的提取率为60.75%,颜色为近白色,纯度为40.59%,持水力为10.8g/g,溶胀性为12.68mL/g.  相似文献   

11.
以绿豆皮为原料,采用超声波-微波联合辅助碱法提取其中的纤维素,研究了Na OH质量分数、Na OH添加量、超声波-微波联合作用时间、微波功率及脱色时间这5个因素对绿豆皮纤维素得率、膨胀力及持水力的影响,并采用傅里叶变换红外光谱(FT-IR)对绿豆皮纤维素的微观结构进行了表征。结果表明:与碱提取法、超声波或微波单独辅助碱提取法相比,超声波-微波联合辅助碱提取法能够有效的提高绿豆皮纤维素的得率并改善其理化性质。通过单因素试验得到了绿豆皮纤维素提取的最佳工艺条件:Na OH质量分数10%、Na OH添加量15 m L/g、超声波-微波联合作用时间15 min、微波功率300 W、脱色时间90 min,在此条件下,获得的绿豆皮纤维素得率为44.91%,膨胀力为4.01 m L/g,持水力为7.16 g/g。绿豆皮纤维素的红外光谱分析结果表明,超声波-微波联合辅助碱法提取的绿豆皮纤维素特征峰没有发生明显变化,且木质素残留较少。本研究结果可以为废弃绿豆皮的再利用提供参考。  相似文献   

12.
以碱提酸沉法制备的绿豆蛋白为研究对象,采用Box-Behnken响应面分析法优化绿豆蛋白水解物的制备工艺。在单因素实验的基础上,选取水解时间、底物浓度、加酶量、水解温度为影响因素,以对脱氧胆酸钠的结合能力为考察指标,采用响应面分析法得到绿豆蛋白水解物的最优制备工艺。对最优条件下制备的绿豆蛋白水解物进行超滤,随后采用Sephacryl S-100 High Resolution凝胶层析柱进行纯化得到降血脂作用较好的水解物。结果表明:在水解时间为146 min,底物浓度为3.1 g/100 mL,加酶量为9861 U/g,水解温度为52.1 ℃条件下得到的水解物与脱氧胆酸钠结合效果最好,结合率为60.46%,与模型预测值61.86%接近,误差较小。在上述最优条件下制备的绿豆蛋白降血脂水解物经超滤后,水解物的截留液呈现出更好的活性。  相似文献   

13.
响应面法优化超声辅助提取茶渣蛋白质的工艺条件   总被引:1,自引:0,他引:1       下载免费PDF全文
以茶渣为原料,采用超声波技术辅助提取茶渣蛋白质,考察了超声功率、超声频率、超声温度、超声时间、碱液浓度、料液比对茶渣蛋白质提取率的影响,并以响应曲面法优化工艺条件;比较分析了超声辅助碱提和热水浴碱提茶渣蛋白质提取率的差异。结果表明,超声波辅助提取茶渣蛋白质最佳提取工艺条件为:超声功率300 W、超声频率为26Hz、超声温度54℃、超声时间61min、碱液浓度0.35mol/L、料液质量比比1g∶27mL,在此条件下,茶渣蛋白质一次提取率为86.50%,超声碱提相对于热水浴碱提,一次提取率提高了37.2%。  相似文献   

14.
超声辅助提取绿豆皮水溶性多糖工艺优化   总被引:1,自引:0,他引:1  
目的:探讨绿豆皮水溶性多糖的超声提取工艺。方法:在单因素试验的基础上,将响应面分析法用于优化绿豆皮水溶性多糖的超声辅助提取工艺。结果:对绿豆皮多糖得率影响的因素依次为超声功率>pH值>超声时间,最佳提取条件为pH4.6、超声功率155W、超声时间40min、提取3次,绿豆皮水溶性多糖得率8.54%,此与理论估计值的误差在5%以内。结论:为绿豆皮水溶性多糖的提取工艺提供参考,有利于对绿豆皮的进一步开发和利用。  相似文献   

15.
绿豆皮中总黄酮的提取工艺研究   总被引:2,自引:1,他引:1  
利用正交试验方法优化得到绿豆皮中总黄酮的最佳提取工艺.以芦丁为标准品,采用分光光度法在510 nm下对提取液中总黄酮含量进行测定.通过提取时间、乙醇体积分数、提取温度、固液比与提取次数5个因素的单因素试验,设计L16(45)正交试验筛选最佳工艺.结果表明:提取时间150 min,乙醇体积分数50%,提取温度80 ℃,固液比1:10,提取次数2次,绿豆皮中总黄酮的提取量为3.879 mg/g,平均回收率为100.84%,精密度试验RSD为0.18%.  相似文献   

16.
绿豆皮黄酮的超声波辅助水提工艺优化及抗氧化活性   总被引:3,自引:0,他引:3  
对绿豆皮黄酮的超声波辅助水提工艺及其体外抗氧化活性进行研究。在单因素试验的基础上,以超声提取时间、超声功率、超声温度和液料比为自变量,以绿豆皮黄酮提取量为响应值,采用四因素五水平的中心组合试验设计进行响应面回归分析。通过分析各因素的显著性和交互作用,优化得到绿豆皮黄酮的超声波辅助水提最佳工艺条件为:超声功率419 W(实际采用400 W)、超声温度70 ℃、超声时间75 min、液料比45∶1(mL/g),在此条件下绿豆皮总黄酮提取量可达(10.18±0.03) mg/g。在对绿豆皮水提黄酮的体外抗氧化活性研究中,发现经HPD100大孔吸附树脂初步纯化的绿豆皮水提黄酮对1,1-二苯基-2-三硝基苯肼自由基的清除能力和VC相当,而其对羟自由基清除能力低于VC,绿豆皮水提黄酮对2 种自由基清除的IC50分别为6.57 μg/mL和54.21 μg/mL,VC的IC50值分别为6.12 μg/mL和16.58 μg/mL。  相似文献   

17.
以产自山西的明绿豆为实验材料,探究萌发前后绿豆中酚类化合物的动态变化规律及其抗氧化活性。采用传统方法进行绿豆的萌发,通过超声-微波协同萃取法提取绿豆及绿豆芽中的多酚类化合物,结合植物广靶代谢组学的方法对绿豆萌发前后多酚类化合物的提取液进行定性定量分析,明确酚类化合物的组成,分析萌发处理对绿豆多酚组成成分的影响及与其抗氧化活性的关系。结果表明:通过超高效液相色谱-质谱联用仪检测出46种多酚类化合物,筛选出44个差异代谢物,萌发前与萌发后绿豆芽的清除DPPH·能力分别为87.94%和96.24%,总抗氧化能力分别为28.56 U/mL和33.06 U/mL;最后通过KEGG查询得到筛选出的多酚类化合物参与了20个代谢通路。初步明确了绿豆中多酚类活性成分的物质基础,为绿豆的多酚类物质的合理利用与开发提供了参考。  相似文献   

18.
酶法提取绿豆淀粉工艺研究   总被引:3,自引:3,他引:0  
以绿豆为原料,对酶法提取绿豆淀粉工艺进行研究。通过单因素试验,研究酶解温度、酶解时间、蛋白酶添加量、料液比对淀粉提取率影响;通过四因素三水平正交试验确定酶法提取绿豆淀粉工艺最佳参数为:酶解温度46℃、酶解时间4.5 h、蛋白酶添加量700 U/g、料液比1∶3;在此条件下,绿豆淀粉提取率为96.97%。  相似文献   

19.
以苦杏仁皮为原料,选取NaOH溶液浓度、超声时间和超声温度为试验因素,采用响应面法优化苦杏仁皮中水不溶性膳食纤维的提取工艺,并对影响其持水性和溶胀性的因素进行研究。结果表明,苦杏仁皮中水不溶性膳食纤维提取的最佳工艺条件为NaOH溶液浓度0.70 mol/L、超声时间51 min、超声温度86 ℃,此时水不溶性膳食纤维提取率为49.73%。在研究范围内,其持水性和溶胀性受葡萄糖质量分数的影响较小,受酸碱度和超声温度的影响较为显著。  相似文献   

20.
该研究采用超声波辅助碱法提取金针菇可溶性膳食纤维(SDF),利用响应面法对金针菇SDF的提取工艺进行优化。选取液料比、超声时间、超声温度、碱液质量分数为影响因素,以金针菇SDF提取率为响应值,应用Box-Behnken试验设计建立数学模型,进行响应面分析,并对其理化性质进行检测。结果表明,超声波辅助碱法提取金针菇SDF的优化工艺条件为超声功率150 W,液料比10∶1(mL∶g)、超声时间69 min,超声温度49 ℃,碱液质量分数5.10%。在此条件下金针菇SDF提取率可达20.25%,持水力为5.18 g/g,膨胀性为4.64 mL/g,持油力为4.77 g/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号