首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过单因素和正交试验得到了大豆异黄酮糖苷酸法水解为大豆异黄酮苷元的最佳工艺条件为:盐酸乙醇的浓度为3 mol/L,水解温度为80℃,水解时间180 min,酸法水解率为81.31%.  相似文献   

2.
大豆异黄酮糖苷水解工艺的研究   总被引:2,自引:0,他引:2  
通过正交试验得到了大豆异黄酮糖苷水解为大豆异黄酮苷元的最佳工艺条件。最佳酸法水解工艺条件为:盐酸浓度3 mol/L,水解温度80℃,水解时间180 min,酸法水解率为81.31%;最佳酶法水解工艺条件为:pH 6.0,酶解温度38℃,酶解时间90 min,加酶量为0.9 mg(50 mg糖苷型大豆异黄酮提取物),酶法水解率为82.54%。酶法水解的效果优于酸法水解的效果。  相似文献   

3.
《粮食与油脂》2017,(1):79-82
利用裂褶菌发酵β–葡萄糖苷酶将大豆异黄酮糖苷转化为苷元,研究底物浓度、pH、温度和时间对糖苷转化率的影响,采用正交试验优化转化条件。结果显示:最佳条件为底物浓度15g/100mL、温度50℃、转化时间20h,此时测得大豆苷和染料木苷的转化率分别为99.14%和98.57%。  相似文献   

4.
以经过炒制后的大豆异黄酮粉为原料,采用单元因素和响应曲面法先后对酸水解和超声水解条件进行优化,用HPLC法测定结合型和游离型大豆异黄酮含量,计算苷元转化率。得到结果为:酸水pH 3.2,时间3.9 h,温度82℃,苷元转化率31.34%;超声温度35℃,功率200 W,时间1.95 h。苷元转化率43.81%。超声可使苷元转化率提高12.47%,有使糖苷转化为苷元的水解作用,此外研究结果表明将单一方法相继联合使用,对苷元转化率有叠加效果。  相似文献   

5.
采用盐酸和β-葡萄糖苷酶分别水解银杏叶提取物(GBE)制备银杏黄酮苷元.通过正交试验得出了酸水解的最佳工艺参数为:温度70℃、时间4h、盐酸浓度4mol/L、甲醇浓度为80%、固液比(mg/ml)2:1;酶水解的最佳工艺参数为:温度40℃、酶浓度5×10-3mg/ml、pH5.0下水解6h.由HPLC图谱比较发现,经酸解的产物内有效成分只有黄酮苷元,而经酶解的产物内还保留了银杏内酯等活性成分,有利于保留银杏叶提取物的综合生物活性.  相似文献   

6.
为了优化天山茶藨茎5种黄酮苷元(木犀草素、槲皮素、山奈酚、异鼠李素、芹菜素)的酸水解提取工艺,评价其体外抗氧化和α-葡萄糖苷酶抑制活性,本文利用UPLC-MS/MS法测定天山茶藨茎5种黄酮苷元的提取率,通过单因素实验和正交试验优化天山茶藨茎黄酮苷元酸水解提取工艺。利用DPPH、ABTS自由基清除实验测定天山茶藨茎提取物及5种黄酮苷元的抗氧化活性,并测定了其α-葡萄糖苷酶抑制活性。结果表明,5种黄酮苷元的检出限、定量限分别在0.8~1.6、2.9~5.4 μg/L,在3.2~207.0 μg/L范围内具有良好的线性关系(R2≥ 0.9962),方法的稳定性、精密度和重复性良好(RSD≤4.4%)。确定最佳酸水解提取工艺为:90%甲醇溶液(含5%盐酸)、提取温度:70℃、提取时间:100 min,该条件下,总黄酮苷元提取率为4.06 mg/g,RSD<5%,表明正交试验优化的提取条件稳定可行。天山茶藨茎提取物及5种黄酮苷元均具有一定的α-葡萄糖苷酶抑制活性和抗氧化活性,其中甲醇盐酸提取物与5种黄酮苷元的α-葡萄糖苷酶抑制活性均高于阳性对照阿卡波糖(IC50:53.84±2.41 mg/L),槲皮素对DPPH自由基的清除活性最好(IC50:(2.94±0.18) mg/L),木犀草素、山奈酚对ABTS自由基清除活性较好(IC50分别为(5.34±0.10)、(5.55±0.17) mg/L),它们的抗氧化活性高于阳性对照VC。本研究建立的UPLC-MS/MS方法灵敏、精确、高效,可以对天山茶藨茎5种黄酮苷元化合物同时进行定量分析。优化的酸水解提取工艺能有效提高天山茶藨茎黄酮苷元的提取率。  相似文献   

7.
对牛蒡子中牛蒡子苷元微波辅助水解提取工艺进行了研究。采用微波法,利用单因素和正交实验对牛蒡子中牛蒡子苷水解提取牛蒡子苷元工艺进行了优化,并建立了牛蒡子中牛蒡子苷和牛蒡子苷元的高效液相色谱(HPLC)检测方法。结果表明,最佳水解工艺条件为:盐酸浓度1 mol/L、微波时间500 s、料液比1:6、水解一次,牛蒡子苷水解率达到98%以上,牛蒡子苷元提取率达到1.80%。与传统的水解提取方法比,本方法工艺简单、高效。  相似文献   

8.
以竹柳叶为原料,采用乙醇回流提取法对竹柳叶黄酮的提取工艺进行研究,确定最优提取工艺,并对黄酮类成分进行初步分析。在单因素试验的基础上,以黄酮得率为指标,选取提取温度、料液比、乙醇浓度、提取时间4个因素进行正交试验,对提取工艺进行优化。采用高效液相-离子阱-飞行时间质谱(LCMS-IT-TOF)技术对黄酮成分进行分析。结果表明:竹柳叶黄酮的最佳提取工艺为提取温度80℃、料液比1∶40(g/m L)、乙醇浓度55%、提取时间2 h,此条件下,黄酮得率为4.0%。共推测出6种黄酮类化合物,即异牡荆素-7-O-葡萄糖苷、芦丁、木犀草素-7-O-葡萄糖苷、异鼠李素-3-O-芸香糖苷、芹黄素-7-O-葡萄糖醛酸苷、金圣草素-葡萄糖醛酸苷。  相似文献   

9.
研究乙酸催化大豆异黄酮糖苷水解苷元的最佳工艺条件。通过水解前后大豆异黄酮糖苷含量变化计算水解率为评价指标,采用单因素和正交试验法对水解的工艺条件进行优化。最佳水解工艺为:反应温度160℃,反应时间4 h,乙酸水溶液浓度2.0 mol/L,水解率达到92.0%以上。用薄板层析和高效液相色谱对水解产物进行定性和定量分析。探索出了一条简便绿色无污染大豆异黄酮糖苷水解生成苷元工艺路线。  相似文献   

10.
研究乳酸催化水解大豆异黄酮糖苷的最佳工艺条件。以大豆异黄酮糖苷的水解率为评价指标,通过单因素试验对水解过程中的不同影响因素进行考察,运用正交试验优化了乳酸水解大豆异黄酮糖苷的反应条件,结果为,水解温度163℃,水解时间2.5 h,乳酸水溶液浓度2.0 mol/L,水解率可达100%。优选所得的大豆异黄酮糖苷水解生成苷元的工艺简单易行,实用性高。  相似文献   

11.
试验利用黑曲霉β-葡萄糖苷酶处对豆浆进行水解处理,将结合型大豆异黄酮糖苷转化为游离型苷元。选大豆为原料,以单因素实验为基础,考察加酶量、反应时间、反应温度三个因素对豆浆中大豆异黄酮糖苷水解的影响;根据Box-Behnken实验设计原理,选取不同加酶量、反应时间、反应温度3因素3水平进行中心组合实验,建立豆浆中大豆异黄酮苷元含量的多项式回归预测模型,确定了最佳工艺参数。结果表明,最佳水解工艺条件为:加酶量0.028 U/5 mL,反应时间1.64 h,反应温度53.82℃,在此条件下制得豆浆大豆异黄酮苷元含量明显提高。测得大豆苷元(De)、黄豆黄素(Gle)、染料木素(Ge)的浓度分别为39.434±1.410μg/m L、4.626±0.462μg/m L、45.851±2.098μg/m L。而大豆苷元(De、)黄豆黄素(Gle)、染料木素(Ge)浓度的响应面预测值分别为40.905μg/m L、4.263μg/m L、48.441μg/m L,测定值与模拟值接近。优化后的工艺条件合理、可行,能明显提高豆浆中大豆异黄酮苷元的含量。  相似文献   

12.
盐酸水解大豆异黄酮工艺条件的研究   总被引:1,自引:0,他引:1  
为提高总异黄酮中的染料木黄酮含量,用盐酸水解大豆异黄酮粗品,单因素试验和正交试验研究表明,盐酸浓度是影响大豆异黄酮水解的主要因素.正交试验得出盐酸水解大豆异黄酮的最佳工艺条件为:盐酸浓度1 mol/L,水解时间4 h,水解温度55℃.以染料木黄酮计的总异黄酮含量由3.06%提高到5.45%.  相似文献   

13.
以不同来源的β-葡萄糖苷酶水解刺梨槲皮素-3-O-芸香糖苷、槲皮素-3-O-鼠李糖苷和槲皮素-3-O-葡萄糖苷,探讨提高刺梨黄酮苷元释放能力的生物转化途径。以槲皮素含量与糖苷转化率为指标,采用高效液相色谱法对来源于嗜酸乳杆菌、木霉和杏仁的β-葡萄糖苷酶水解3种槲皮素糖苷的转化率及槲皮素含量进行动态监测,以酶解时间、酶解pH值、酶解温度和酶用量(酶与底物质量比)为单因素,考察各因素参数独立变化对指标的影响,再以Box-Behnken 方法研究各因素及其交互作用对转化率的影响,优化工艺条件。杏仁β-葡萄糖苷酶水解3种糖苷转化所得槲皮素含量最高,对不同底物的转化率由高到低依次为槲皮素-3-O-葡萄糖苷(74.10%)、槲皮素-3-O-芸香糖苷(64.30%)、槲皮素-3-O-鼠李糖苷(31.80%)。杏仁β-葡萄糖苷酶优化水解工艺条件为酶解时间28.90min,酶解pH值4.9,酶解温度52℃,酶用量0.08%。此条件下得到槲皮素-3-O-芸香糖苷转化率71.48%,槲皮素-3-O-鼠李糖苷转化率36.32%,槲皮素-3-O-葡萄糖苷转化率77.86%。  相似文献   

14.
利用二步水解法制备大豆异黄酮苷元。经弱碱水解丙二酰基大豆异黄酮为糖苷型大豆异黄酮,再经果胶酶进一步水解获得富含苷元的大豆异黄酮。采用单因素试验和正交试验,得到果胶酶制备大豆异黄酮苷元的较优工艺条件:果胶酶水解时间20 min,水解温度47.5℃,水解pH值4.2,酶-底物质量比为0.80%。苷元水解得率为87.37%。  相似文献   

15.
在对超声波辅助酸水解大豆异黄酮的研究中,重点考察了盐酸浓度,超声时间,超声水浴温度对大豆异黄酮水解效果的影响。以水解液中的大豆苷元浓度作为指标,进行超声波辅助酸水解与普通酸水解对比研究,证明超声波辅助盐酸水解大豆异黄酮可以很大程度上提高水解效率和大豆苷元产量。通过正交实验优选出大豆异黄酮超声波辅助水解工艺参数:盐酸浓度为2mol/L,超声温度为90℃,水解时间3h。  相似文献   

16.
采用单因素试验分析乙醇浓度、料液比、提取温度、提取时间对黄酮得率的影响。采用4因素3水平,利用响应面法对黄酮提取工艺进行优化,并对各个因素的显著性和交互作用进行分析。确定最佳工艺条件为:乙醇浓度60%、料液比1∶50(g∶m L)、提取温度60℃、超声时间45 min,黄酮得率为3.14%。  相似文献   

17.
酶水解对大豆异黄酮粗提物中苷元含量的影响   总被引:2,自引:0,他引:2  
采用β-葡萄糖苷酶水解的方法将大豆异黄酮糖苷转化为苷元,以染料木素和大豆苷元含量为指标,通过单因素试验对水解过程中的不同影响因素进行了考察。以染料木素含量为指标,运用正交试验优化了β-葡萄糖苷酶水解大豆异黄酮的工艺条件为反应温度40℃、水解时间1.5h、水解介质pH4.5、水解底物浓度10mg/mL,在此条件下,水解得到的大豆异黄酮苷元中染料木素的含量可达到22.91%。  相似文献   

18.
于丽颖  成乐琴 《食品工业科技》2014,(20):288-290,294
目的:研究苹果酸催化大豆异黄酮糖苷水解苷元的最佳工艺条件。方法:以大豆异黄酮糖苷水解率为评价指标,采用单因素和正交实验法对水解的工艺条件进行优化。结果:确定苹果酸催化大豆异黄酮糖苷最佳水解工艺条件为:反应温度130℃,反应时间3.0h,苹果酸水溶液浓度2.0mol/L,水解率达到94.0%以上。结论:优选得到的糖苷水解生成苷元工艺简单易行,稳定性好。  相似文献   

19.
用响应面分析法 (RSA)对竹叶黄酮糖苷 (Ebl971)的水解工艺进行了优化。以水解得率为响应值 ,确定在甲醇体系中最适的水解参数为 :底物浓度 1mg/ml,盐酸浓度 1mol/l和水解时间 55min。用此优化条件重复试验 2次 ,平均水解得率为 55.0 % ,水解产物中总黄酮苷元的含量为 56 .6 % ,水解完全 ,且水解产物的亲油性有了显著提高  相似文献   

20.
本实验研究了花生茎叶黄酮的乙醇提取工艺及其抗氧化活性。以乙醇浓度、提取时间、提取温度和液料比为自变量,以花生茎叶黄酮提取量为响应值,采用四因素三水平的Box-Behnken响应面实验设计优化黄酮提取工艺。通过分析各因素的显著性和交互作用,优化得到花生茎叶黄酮最佳提取工艺条件为:乙醇浓度为49%、液料比为10∶1、提取温度为67℃、提取时间为2.4 h,此条件下黄酮提取率为(37.32±0.12)mg/g;花生茎叶黄酮浓度为500μg/m L时,其对DPPH自由基和羟自由基的清除活性分别为83.2%和99.9%,说明了花生茎叶黄酮具有较好的抗氧化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号