首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
为研究高转速情况下时变啮合刚度和啮合冲击对斜齿轮传动振动特性的影响,以某纯电动汽车高速斜齿轮传动为研究对象,建立了弯-扭-轴动力学模型;采用改进的基于承载接触分析的计算方法获得时变啮合刚度曲线,并计算了啮合冲击时间及啮合冲击力幅值;分析了时变啮合刚度、啮合冲击以及两者综合3种激励条件下高速斜齿轮传动系统的振动特性。结果表明:时变啮合刚度激励下,在过共振区,转速变化对系统振动的影响不显著;啮合冲击激励以及综合激励条件下,系统振动随转速的升高而增大,与啮合冲击激励相比,综合激励下振动加速度增幅较缓。研究结果可为纯电动汽车高速斜齿轮传动的设计和工程应用提供参考依据。  相似文献   

2.
齿轮啮合传动的内部激励是引起齿轮振动和噪声的关键因素,以某8挡自动变速器中一对常啮合斜齿轮为研究对象,对其啮合传动过程的内部激励开展全面深入研究,包括齿面接触状态、时变啮合刚度、误差激励和啮合冲击。采用有限元法分析斜齿轮的静态和动态接触过程,得到齿面接触应力的大小及分布;采用接触线长度变化表示时变啮合刚度的理论方法和采用有限元仿真的方法得到斜齿轮传动的时变啮合刚度曲线;采用理论计算和有限元法分析斜齿轮误差激励,包含啮合误差、静态传递误差和动态传递误差;采用有限元法分析啮合冲击,得到齿轮传动过程的齿根应力;采用有限元法计算齿面接触线上应力分布。研究为斜齿轮传动状态的改善提供了基础。  相似文献   

3.
含间隙的斜齿轮副扭振分析与试验研究   总被引:2,自引:0,他引:2  
建立了科齿轮副的间隙型非线性扭振模型,其中考虑了斜齿轮副的啮合综合误差,齿侧间隙和时变啮合刚度。采用三维有限元法计算了斜齿轮副啮合刚度,用三次样条插值拟合得到时变啮合刚度函数。用数值积分方法对系统的非线性动力学微分方程进行了求解,获得了斜齿轮副在外转矩作用下受静态传动误差激励的非线性稳态强迫响应,并对系统的动态响应进行了测试,试验和理论计算结果了一致性证实了本文所提出模型和解法的正确性。  相似文献   

4.
针对齿轮副非线性振动问题展开研究,综合分析了啮合冲击激励、时变啮合刚度和误差激励对齿轮系统振动的影响。根据扭转啮合刚度定义,分别建立了无齿面缺陷和有齿面缺陷的齿轮三维接触仿真分析模型。计算了两种运行状态下,不同接触位置上的扭转啮合刚度。在进行齿轮副非线性振动的分析时,综合考虑了啮合冲击激励、时变啮合刚度和误差激励等非线性因素,建立了齿轮副非线性动力学模型,采用变步长四阶Runge-Kutta数值积分方法求解了系统的动态响应。  相似文献   

5.
建立了一个包含无侧隙啮合、轴承间隙、时变啮合刚度、重力激励和其它外部激励的斜齿行星传动系统平移-扭转耦合动力学模型,研究了影响齿面接触状态的主要因素以及齿面接触状态对斜齿行星齿轮传动系统动态特性的影响规律。仿真结果表明,无侧隙啮合对斜齿行星传动系统的轴承力和齿面啮合力有显著的影响,无侧隙啮合与侧隙、轴承间隙密切相关,并且当行星齿轮的组件重力很大时,重力激励是造成无侧隙啮合的重要原因。  相似文献   

6.
渐开线直齿轮的啮合冲击响应   总被引:6,自引:0,他引:6  
啮合冲击是影响齿轮传动性能的重要因素。本文分析了啮合冲击激励的构成和特点,导出了求解啮合冲击响应的方法。指出了减小啮合冲击的有效途径。  相似文献   

7.
赵宁  李兴  高浩 《机械制造》2012,50(5):7-10
为降低航空人字齿轮传动的振动噪声,对其动态特性进行研究.应用集中质量法建立了12自由度人字齿轮弯-扭-轴耦合动力学模型,模型中综合考虑了轮齿刚度激励、误差激励和啮合冲击激励根据牛顿力学定律,推导出相应的运动微分方程.采用变步长四阶Runge-Kutta法对方程进行了求解,获得了系统的动态响应分析了各种激励对人字齿轮振动特性的影响.结果表明,齿轮啮合线上的振动加速度和轴向振动加速度大于齿轮横向振动加速度,是引起齿轮振动噪声的主要原因 .刚度激励和啮合冲击激励主要影响啮合线方向上的振动,轴向位移激励主要影响轴向振动,对横向和啮合线方向的振动几乎没有影响.  相似文献   

8.
电动汽车变速箱是电动汽车噪声的主要来源。为减小变速箱斜齿轮由于弹性变形和制造误差引起的啮合冲击,使变速箱传动平稳及改善啮合噪声,有必要研究齿轮修形技术。利用Pro/E软件建立斜齿轮的参数化模型并导人到ANSYS Workbench中进行接触有限元分析,并对3种修形方案的接触应力进行比较。结果表明:斜齿轮副采用合理的修形方案可以降低最大接触应力峰值,消除啮合冲击,同时提高变速箱齿轮传动的平稳性。  相似文献   

9.
疲劳点蚀斜齿轮啮合刚度计算是齿轮故障动力学分析的重要基础.基于有限元的斜齿轮啮合刚度计算方法,建立了正常齿轮和疲劳点蚀齿轮的有限元模型.通过有限元模型计算,得到了齿面法向接触力和综合弹性变形量;并根据啮合刚度计算方法,得到了齿轮的单齿啮合刚度和多齿综合啮合刚度.分析不同点蚀剥落长度和宽度对齿轮啮合刚度的影响得知,剥落长度和宽度对齿轮啮合刚度影响较大;而且剥落长度会影响齿轮啮合刚度的变化区域.通过疲劳点蚀试验证明,齿轮啮合刚度的减小使得齿轮振动冲击响应增大.  相似文献   

10.
齿轮啮合内部动态激励数值根据   总被引:24,自引:2,他引:22  
把具有内部激励和时变刚度齿轮系统非线性微分方程变换为近似的线性微分方程,把时变刚度激励、误差激励、啮合冲击激励作为右端顶。时变刚度曲线用轮齿三维接触有限元方法求得,啮合冲击激励力用轮齿三维 冲击-动力接触有限元混合法求得。误差激励按精度等级确定的齿轮偏差进行模拟。把激励力作用在整个齿轮系统的三维有限元模型上,以便求得其振动响应。  相似文献   

11.
在齿轮传动中,轮齿的弹性变形引起的刚度激励和啮合冲击是齿轮啮合的主要动态激励之一,所以确定轮齿的弹性变形一直是齿轮动力学的重要任务。但是轮齿的弹性变形及其啮合过程变化较复杂,精确计算困难。我们用有限元法对不同齿数、载荷、加载位置及圆角半径的齿轮受载后的弹性变形进行了大量的计算,且将有限元模型多次细化网格作收敛验证,验证结果收敛。将计算数据与实测值进行对比,证明了有限元的准确性和精确性。在详尽分析计算结果的基础上,找出了影响直齿外齿轮变形挠度的6个主要参数,并且将这些参数与变形的关系拟合曲线,找到了相关的规律。  相似文献   

12.
为了分析功率二分支齿轮传动系统的动力学特性,构建由斜齿分扭传动级与人字齿并车传动级构成的分扭 并车纯扭转动力学模型;通过高斯消元去除状态方程中的冗余变量,解决了系统动力学方程的奇异性并采用 4 阶 Runge-Kutta 法数值求解;分析了无量纲时间下不同齿型构成的 2 级传动动载特性,采用模态分析法,确定该系统的固有频率与固有振型,并结合三维瀑布图分析激振频率对系统共振特性的影响。研究结果表明:该齿轮传动系统由人字齿构成的并车传动级动力学特性优于由斜齿构成的分扭传动级;系统啮合位移与动态啮合力响应瀑布图表明,在该系统激振频率为 1820 Hz 时,系统出现超谐波共振。  相似文献   

13.
应用交错轴斜齿轮啮合理论,分析了齿轮基节偏差对齿轮传动过程的影响;给出了交错轴斜齿轮啮合传动过渡过程的误差与变异数学模型,完善了齿轮整体误差测量理论。  相似文献   

14.
为了分析基于齿背接触刚度的高速斜齿轮瞬态振动放大特性,针对高转速瞬态工况下斜齿轮齿面啮合-脱啮-齿背接触的齿面实际承载接触状态,建立了同时考虑啮合时间与齿面振动位移耦合机理的斜齿轮动态啮合刚度。在细化考虑齿背啮合机理、基于齿背实际啮合刚度的模型基础上,进一步建立斜齿轮啮合型瞬态振动模型,并在此基础上展开不同齿侧间隙以及齿背接触对系统瞬态振动特性影响分析研究。搭建封闭功率流式斜齿轮瞬态扭转振动测试试验台,对基于齿背接触刚度的斜齿轮瞬态振动特性进行了验证。该研究具有较好的理论研究意义,有利于斜齿轮传动系统在航空传动、新能源传动系统上的应用推广,进一步提升高转速齿轮系统的瞬态振动噪声品质。  相似文献   

15.
为了制造出高精度硬齿面斜齿面齿轮和获得抛物线传动误差并改善啮合性能,对采用碟形砂轮加工双向修形的斜齿面齿轮的磨齿方法进行了研究。设计了渐开线失配的碟形砂轮齿面,分析了碟形砂轮磨削斜齿面齿轮的展成原理,根据展成原理和用渐开线失配的碟形砂轮并改变砂轮的运动,推导出双向修形斜齿面齿轮的齿面方程。给出了双向修形斜齿面齿轮的齿面计算和接触分析实例,结果表明:理论齿面的最大齿面误差为5.98×10-4μm,采用碟形砂轮加工双向修形斜齿面齿轮的磨齿方法是可行的,获得了斜齿面齿轮抛物线传动误差,避免了边缘接触并改善了斜齿面齿轮的啮合性能。  相似文献   

16.
黎小明 《机电工程》2007,24(6):91-93
研究了粉末冶金斜齿轮的传动效率特性,与38CrMoAl斜齿轮的传动效率进行对比,分析了材料因素对齿轮传动效率的影响.设计了齿轮传动效率测量方案、步骤.试验结果表明,在相同工况下,粉末冶金斜齿轮的传动效率比相应的38CrMoAl斜齿轮要高,传动更加平稳,啮合过程中润滑性能更好、磨损小,因而具有广阔的应用前景.  相似文献   

17.
为研究变工况冲击对齿轮传动系统动特性影响,基于弹塑性接触理论,给出一种可以考虑变工况冲击、啮入冲击、节点冲击的齿轮接触碰撞力参数预估算法,并结合多体动力学软件建立柔性齿轮传动系统动力学模型。该模型和算法可用于大接触变形和承受频繁冲击齿轮传动系统稳态和瞬态动特性分析。研究表明:与啮入冲击导致的稳态动态啮合力相比,变工况冲击引起的瞬态动态啮合力具有幅值大、冲击时间短等特点;在不同工况下,啮入冲击会引起不同周期的齿轮动态啮合力波动;滑动摩擦系数对齿轮切向摩擦力的节点冲击影响更大。研究结果对齿轮的接触碰撞力参数预估及全面认识齿轮传动系统瞬态动特性等研究具有积极的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号