首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4610篇
  免费   358篇
  国内免费   141篇
电工技术   52篇
综合类   166篇
化学工业   2420篇
金属工艺   540篇
机械仪表   245篇
建筑科学   112篇
矿业工程   25篇
能源动力   17篇
轻工业   268篇
水利工程   8篇
石油天然气   44篇
武器工业   20篇
无线电   266篇
一般工业技术   774篇
冶金工业   80篇
原子能技术   20篇
自动化技术   52篇
  2024年   12篇
  2023年   89篇
  2022年   63篇
  2021年   161篇
  2020年   142篇
  2019年   148篇
  2018年   113篇
  2017年   143篇
  2016年   145篇
  2015年   157篇
  2014年   198篇
  2013年   770篇
  2012年   225篇
  2011年   290篇
  2010年   175篇
  2009年   191篇
  2008年   189篇
  2007年   237篇
  2006年   215篇
  2005年   182篇
  2004年   176篇
  2003年   121篇
  2002年   97篇
  2001年   98篇
  2000年   92篇
  1999年   72篇
  1998年   83篇
  1997年   71篇
  1996年   56篇
  1995年   85篇
  1994年   57篇
  1993年   40篇
  1992年   52篇
  1991年   29篇
  1990年   20篇
  1989年   22篇
  1988年   18篇
  1987年   14篇
  1986年   12篇
  1985年   16篇
  1984年   7篇
  1983年   10篇
  1982年   10篇
  1976年   4篇
  1974年   1篇
  1959年   1篇
排序方式: 共有5109条查询结果,搜索用时 15 毫秒
11.
Focal adhesions are polyproteins linked to extracellular matrix and cytoskeleton, which play an important role in the process of transforming force signals into intracellular chemical signals and subsequently triggering related physiological or pathological reactions. The cytoskeleton is a network of protein fibers in the cytoplasm, which is composed of microfilaments, microtubules, intermediate filaments, and cross-linked proteins. It is a very important structure for cells to maintain their basic morphology. This review summarizes the process of fluid shear stress transduction mediated by focal adhesion and the key role of the cytoskeleton in this process, which focuses on the focal adhesion and cytoskeleton systems. The important proteins involved in signal transduction in focal adhesion are introduced emphatically. The relationship between focal adhesion and mechanical transduction pathways are discussed. In this review, we discuss the relationship between fluid shear stress and associated diseases such as atherosclerosis, as well as its role in clinical research and drug development.  相似文献   
12.
孙璇 《煤》2020,29(1):22-25
为了探究浮选机孔径大小对煤泥浮选试验的影响,通过煤泥颗粒与气泡的碰撞概率及粘附作用,适当调节叶轮转速,求得不同条件下精煤产率、精煤灰分、尾煤灰分以及可燃体回收率等值,验证浮选机孔径变化的影响效应。结果表明,增大浮选机进气管孔径,矿浆内大直径的气泡较多,与粗煤泥的携载作用增大,与细粒煤泥碰撞概率降低,部分矿粒无法粘附;减小浮选机进气管的孔径,其作用与上述情况恰好相反。两种条件下选取适当且相同的叶轮转速,试验后可以看出,气泡孔径的大小对粗细煤泥作用影响不同,但究其综合因素较复杂,增加或减小气泡尺寸对试验结果无较大影响。  相似文献   
13.
Proficiency on underlying mechanism of rubber-metal adhesion has been increased significantly in the last few decades. Researchers have investigated the effect of various ingredients, such as hexamethoxymethyl melamine, resorcinol, cobalt stearate, and silica, on rubber-metal interface. The role of each ingredient on rubber-metal interfacial adhesion is still a subject of scrutiny. In this article, a typical belt skim compound of truck radial tire is selected and the effect of each adhesive ingredient on adhesion strength is explored. Out of these ingredients, the effect of cobalt stearate is found noteworthy. It has improved adhesion strength by 12% (without aging) and by 11% (humid-aged), respectively, over control compound. For detailed understanding of the effect of cobalt stearate on adhesion, scanning electron microscopy and energy dispersive spectroscopy are utilized to ascertain the rubber coverage and distribution of elements. X-ray photoelectron spectroscopy results helped us to understand the impact of CuXS layer depth on rubber-metal adhesion. The depth profile of the CuXS layer was found to be one of the dominant factors of rubber-metal adhesion retention. Thus, this study has made an attempt to find the impact of different adhesive ingredients on the formation of CuXS layer depth at rubber-metal interface and establish a correlation with adhesion strength simultaneously.  相似文献   
14.
Abstract

The expected longer service life of modified asphalt can be jeopardized by different environmental factors, such as moisture, oxidation, etc. which affect the desired properties by altering the adhesive property. An insight into knowledge of the adhesive property of the asphalt can help in providing more durable asphalt pavement. The study attempted to develop different models of adhesive properties of polymers and carbon nanotubes (CNTs) modified asphalt binders. The polymer-CNT modified asphalt is processed to prepare different types of samples, by simulating the damage due to moisture and oxidization, following the corresponding standard method. An Atomic Force Microscopy (AFM) was employed to assess the nanoscale adhesion force of the tested samples following the existing functional group in asphalt. Finally, the study has developed Radial Basis Function Neural Network (RBFNN) as a function of different parameters including; asphalt chemistry (i.e. AFM tip type and constant), type and percentages of polymers and CNTs and different environmental exposures (oxidation, moisture, etc.) to predict the nano adhesion force of asphalt. It is observed that the adhesive property of the Styrene–Butadiene modified asphalt is more consistent compared to the Styrene–Butadiene–Styrene modified asphalt, while the presence of Single-Wall Nanotubes (SWNT) is observed to affect the adhesive properties of asphalt significantly as compared to Multi-Wall Nanotubes (MWNT). The higher accuracy level of RBFNN model also indicates that the functional group (tip-type) adding with the percentages and types of polymers and CNTs significantly affect the adhesive properties of asphalt.  相似文献   
15.
《Ceramics International》2020,46(5):5649-5657
To establish the relationship between wettability and structure with the change in SAW flux composition, the contact angle measurement study was performed at 1700 K. For MgO–TiO2–SiO2 and Al2O3–MgO–SiO2 flux system the wetting behaviour was studied by evaluating the contact angle as well as surface tension properties. Sessile drop method was used to determine the wetting properties of SAW fluxes. Twenty-one SAW fluxes were designed & developed by applying mixture design approach of design of experiments. Chemical, phase and structural properties of SAW fluxes were measured using modern techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD) & Fourier Transform Infra-red spectroscopy (FTIR). As per the calculated contact angle value, different surface tension values for MgO–TiO2–SiO2 and Al2O3–MgO–SiO2 flux system was calculated using Young's & Boni's equations. Using Dupre's equation the adhesion energy for twenty-one basic fluxes was also calculated. Measured contact angle value increased with increase in the TiO2/MgO & TiO2/Al2O3 flux ratio. Lower contact angle gives higher wettability between the flux and the heating substrate. With increase of TiO2/SiO2 ratio up to 1.5 to 2.0 the calculated surface tension value is decreasing while after that it is increased with increase in TiO2/SiO2 ratio.  相似文献   
16.
在高寒地区运行的列车转向架部位容易发生结冰现象,这在一定程度上对行车安全造成隐患。对于平滑表面而言,表面的接触角滞后与冰粘附强度呈现线性关系,即接触角滞后越小,冰粘附强度越低。基于这一基础理论,本文意在构建低滞后的光滑涂层,实现涂层的低冰粘附强度,从而达到易除冰的效果。研究选用 HDI三聚体型多异氰酸酯为固化剂,对比了 3种商品化具有低表面能特性的含氟羟基树脂应用于双组分防冰涂料的性能差异,并采用疏水性最强、防冰性能最优的氟硅树脂制备了综合性能优异的高寒列车转向架防冰涂料。  相似文献   
17.
Dynamic pull-in/pull-off forces were quantitatively measured using an AFM colloidal probe technique. Two spherical colloids made of silicon dioxide (SiO2) and gold (Au) that were attached to an AFM cantilever were approached to and retracted from a silicon wafer specimen, where the speed of tip approaching/retracting (i.e., vertical dynamics) and specimen sliding (i.e., horizontal dynamics) was controlled. First, when the vertical dynamics of colloidal tip was applied on the stationary silicon wafer specimen, it was observed that the slower tip approaching showed higher pull-in force, while the pull-off force was dependent on both the applied force and the retracting speed. For the two colloidal tips, it was found that the higher applied force and the faster tip retraction led to the higher pull-off force. Next, under the constant speed of tip approach and retraction, horizontal dynamics was applied to the silicon wafer specimen. It was observed that the horizontal motion of the specimen made the pull-off force lower, which could be attributed to the breakage of adhesive asperity junctions at the interface. The pull-off force was further decreased at faster horizontal motion of the specimen due to the longer sliding distance. Therefore, from the systematic experiments of dynamic adhesion measurement, it could be known that if a micro/nano-system is under dynamic surface interaction, its adhesive force cannot be fully described by a conventional quasi-static adhesion model but it should include the effects of applied system dynamics in both normal and tangential directions.  相似文献   
18.
It has been recognized that physical and chemical properties of biomaterial surfaces mediate the quality of extracellular matrix (ECM) that may affect cell behaviors. In nature, ECM is a heterogeneous three-dimensional superstructure formed by three major components, glycosaminoglycan, glycoconjugate, and protein, that anchors cellular compartments in tissues and regulates the function and the behavior of cells. Changes in the biointerface alter the quality of ECM and morphology through cell surface receptors, which, in turn, enable it to trigger specific cell signaling and different cellular responses. In fact, a number of strategies have been used to improve the functionality of surfaces and direct cell behavior through precisely designed environments. Herein, we aimed to discuss, through a science-based viewpoint, the biomaterial surface features on cell behavior and analyze the impact of cell physical modification on dental implant development.  相似文献   
19.
The strong ice bonding to solid surfaces makes deicing such surfaces a challenging task. In this study, a heat flux will be induced into the interlayer of the ice and in this case aluminum. With a high heat flux it is possible to obtain a small liquid layer between the ice and the aluminum. In metallic materials the heat flux can be induced with an electromagnetic field via induction heating. The thickness of the heated metal layer depends on the frequency applied for the induction heating. High frequencies result in very thin layers of metal heated and hence represent an energy efficient method for de-icing the metal surface. The reduction of the energy consumption for deicing is the main goal. One application is the ice removal in ice slurry generators in this study. Compared to ice removal (scraped surface ice slurry generators) induction heating deicing offers energy and maintenance saving potential.  相似文献   
20.
A simple interface fracture test for ceramic environmental barrier coatings (EBCs) on ceramic matrix composites (CMCs) was developed. A variation on the asymmetric double cantilever beam (ADCB) test was proposed so that the interface toughness could be measured in a small specimen of simple shape without applying interlaminar loading to the CMC substrate. The proposed test was applied to an EBC consisting of a mullite layer and Si bond coat on a monolithic SiC substrate. A pre-crack was introduced by pop-in cracking, and then a notch overlapping the pre-crack was machined. The pre-crack was opened by inserting a wedge into the notch. From the critical notch opening displacement the crack starts to propagate, interface toughness is calculated. The measured interface toughness was 4.1?J/m2. Finally, the application range of the test was discussed and suggestions were made for introduction of the notch and pre-crack.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号