首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63227篇
  免费   3465篇
  国内免费   2576篇
电工技术   2543篇
技术理论   1篇
综合类   3087篇
化学工业   14636篇
金属工艺   9549篇
机械仪表   3131篇
建筑科学   1636篇
矿业工程   759篇
能源动力   1767篇
轻工业   2360篇
水利工程   193篇
石油天然气   1398篇
武器工业   414篇
无线电   5816篇
一般工业技术   9341篇
冶金工业   2784篇
原子能技术   1007篇
自动化技术   8846篇
  2024年   57篇
  2023年   713篇
  2022年   1025篇
  2021年   1527篇
  2020年   1360篇
  2019年   1218篇
  2018年   1081篇
  2017年   1451篇
  2016年   1811篇
  2015年   2064篇
  2014年   3142篇
  2013年   3226篇
  2012年   3619篇
  2011年   5546篇
  2010年   4398篇
  2009年   4692篇
  2008年   4056篇
  2007年   4465篇
  2006年   4015篇
  2005年   3336篇
  2004年   2917篇
  2003年   2762篇
  2002年   2394篇
  2001年   1532篇
  2000年   1234篇
  1999年   974篇
  1998年   726篇
  1997年   632篇
  1996年   508篇
  1995年   422篇
  1994年   347篇
  1993年   302篇
  1992年   274篇
  1991年   233篇
  1990年   230篇
  1989年   198篇
  1988年   89篇
  1987年   60篇
  1986年   78篇
  1985年   77篇
  1984年   63篇
  1983年   46篇
  1982年   42篇
  1981年   42篇
  1980年   40篇
  1978年   35篇
  1977年   41篇
  1976年   40篇
  1975年   48篇
  1974年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
2.
《Ceramics International》2021,47(20):28203-28209
Vanadium carbide (VC) as excellent ceramic and functional material is usually prepared by carbothermal reduction of V2O5 which must be extracted from a typical V slag by complex processes. Pollutants, such as ammonia-nitrogen wastewater, NH3 and CO2 are inevitably discharged. A novel and green method for VC preparation was proposed by one-step co-electrolysis of soluble NaVO3 and CO2 in molten salt. It was found that VC with high purity was easily obtained by reducing electrolysis temperature and CO2 flow rate to 600 °C and 10 mL min−1 at 3.0 V. Besides VC with particles and layered stacking structure in products, a small amount of carbon and oxygen elements existed. The atomic percentage contents of C, V, and O elements in VC were about 50.0%, 44.5% and 3.8%, respectively. During electrolysis, CO32− and VO3 was reduced at about −0.55 V (vs. Ag/AgCl) and −1.38 V (vs. Ag/AgCl), respectively. CO32− ions were more easily reduced than VO3, and was firstly reduced to CO22− and then converted to C. Then, VC was prepared by two routes from CO2 and NaVO3. One route is that VO3 ions are firstly electroreduced to VO2 ions and then are further electroreduced to VC with C. Another route is that VO3 ions are electroreduced to V which in-situ reacted with C to VC. Both VO3 and CO32− ions are electroreduced by two-step process. In final, VC is in-situ deposited on cathode. It provides a novel and green way to prepare VC and also achieves the high value-added utilization of vanadium slag and CO2.  相似文献   
3.
The effect of dry and wet ball milling of LiFe5O8 ferrite powder on the microstructure and electromagnetic properties of ferrite ceramics was studied using XRD analysis, scanning electron microscopy, dilatometry, thermogravimetry, calorimetry, and measurement of specific magnetization and electrical resistance. The sintering temperature was 1050 °C; the sintering time was 2 h. It was found that ferrite fabricated from dry-milled powder exhibits an ordered α-LiFe5O8 phase with bulk density of 91%. Its saturation magnetization and Curie temperature are 55 emu/g and 628°С, respectively. Specific electrical resistance is 4?106 Ω cm. Wet milling in isopropyl alcohol causes formation of a disordered β-LiFe5O8 phase. Ceramics produced by this method shows higher bulk density (97%) and low porosity, and an order of magnitude lower resistivity. Its saturation magnetization and Curie temperature are 51 emu/g and 607°С, respectively.  相似文献   
4.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
5.
《Ceramics International》2021,47(24):34278-34288
Materials exhibiting colossal dielectric constant are the most sought-after materials due to their variety of applications in various electronics industries. NiFe2O4 and LaFeO3 belonging to the spinel and perovskite structures, respectively, were coupled into a nanocomposite by adapting a one-pot sol-gel synthesis. The ratio of NiFe2O4:LaFeO3 was varied and the synthesized materials were studied for their dielectric behaviors. Interestingly, among the samples studied, the nanocomposite with the ratio of 1:2 of NiFe2O4–LaFeO3 exhibited a high dielectric constant value of 10390 at a frequency of 1 kHz with a several-fold increase in conductivity. The high conductivity resulted in a high dielectric loss. The origin of such a high dielectric constant and loss have been attributed to the Maxwell-Wagner type space charge polarization arising from the microstructure that consists of large and continuous grain boundaries, and the conducting phase at the interface, respectively.  相似文献   
6.
Pseudoxanthoma elasticum (PXE) is a complex autosomal recessive disease caused by mutations of ABCC6 transporter and characterized by ectopic mineralization of soft connective tissues. Compared to the other ABC transporters, very few studies are available to explain the structural components and working of a full ABCC6 transporter, which may provide some idea about its physiological role in humans. Some studies suggest that mutations of ABCC6 in the liver lead to a decrease in some circulating factor and indicate that PXE is a metabolic disease. It has been reported that ABCC6 mediates the efflux of ATP, which is hydrolyzed in PPi and AMP; in the extracellular milieu, PPi gives potent anti-mineralization effect, whereas AMP is hydrolyzed to Pi and adenosine which affects some cellular properties by modulating the purinergic pathway. Structural and functional studies have demonstrated that silencing or inhibition of ABCC6 with probenecid changed the expression of several genes and proteins such as NT5E and TNAP, as well as Lamin, and CDK1, which are involved in cell motility and cell cycle. Furthermore, a change in cytoskeleton rearrangement and decreased motility of HepG2 cells makes ABCC6 a potential target for anti-cancer therapy. Collectively, these findings suggested that ABCC6 transporter performs functions that modify both the external and internal compartments of the cells.  相似文献   
7.
针对PVC企业电石车间存在的粉尘污染严重、人工操作安全隐患大等问题,江苏中吴环境工程设计研究有限公司开发了电石汽车卸料、破碎、除尘、输送一体化智能系统(即中吴天玺系统),对该系统的工艺流程、系统组成、占地空间、经济效益和社会效益簣方面进行了介绍。  相似文献   
8.
In this study, we report the three-point flexural strength and fracture toughness of monolithic hafnium carbide up to 2000 °C. HfC with different grain sizes was consolidated using the spark plasma sintering method. Coarse-grained monoliths showed a weak dependence on the strain rate during high-temperature tests at 1600 °C–2000 °C. In contrast, results for the ceramics with a grain size below 20 μm indicated a positive dependence of the yield strength vs strain rate. This allowed us to identify the activation energy for high-temperature deformation in flexure as 370 kJ/mol. This level of activation energy is in satisfactory agreement with reports about the diffusion of C in hafnium carbide.  相似文献   
9.
The construction and examination of meso-structural finite element models of a Chemical-Vapor-Infiltrated (CVI) C/SiC composite is carried out based on X-ray microtomography digital images (IB-FEM). The accurate meso-structural features of the C/SiC composites, which are consisted of carbon fiber tows and CVI-SiC matrix, in particular the cavity defects, are reconstructed. With the IB-FEM, the damage evolution and fracture behaviors of the C/SiC composite are investigated. At the same time, an in situ tensile test is applied to the C/SiC composite under a CT real-time quantitative imaging system, aiming to investigate the damage and failure features of the material as well as to verify the IB-FEM. The IB-FEM results indicate that material damage initially occur at the defects, followed by propagating toward the fiber-tow/SiC-matrix interfaces, ultimately, combined into macro-cracks, which is in good agreement with the in situ CT experiment results.  相似文献   
10.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号