首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  完全免费   1篇
  自动化技术   22篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2012年   4篇
  2011年   1篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
排序方式: 共有22条查询结果,搜索用时 140 毫秒
1.
With the rapid increase in both centralized video archives and distributed WWW video resources, content-based video retrieval is gaining its importance. To support such applications efficiently, content-based video indexing must be addressed. Typically, each video is represented by a sequence of frames. Due to the high dimensionality of frame representation and the large number of frames, video indexing introduces an additional degree of complexity. In this paper, we address the problem of content-based video indexing and propose an efficient solution, called the ordered VA-file (OVA-file) based on the VA-file. OVA-file is a hierarchical structure and has two novel features: 1) partitioning the whole file into slices such that only a small number of slices are accessed and checked during k nearest neighbor (kNN) search and 2) efficient handling of insertions of new vectors into the OVA-file, such that the average distance between the new vectors and those approximations near that position is minimized. To facilitate a search, we present an efficient approximate kNN algorithm named ordered VA-LOW (OVA-LOW) based on the proposed OVA-file. OVA-LOW first chooses possible OVA-slices by ranking the distances between their corresponding centers and the query vector, and then visits all approximations in the selected OVA-slices to work out approximate kNN. The number of possible OVA-slices is controlled by a user-defined parameter delta. By adjusting delta, OVA-LOW provides a trade-off between the query cost and the result quality. Query by video clip consisting of multiple frames is also discussed. Extensive experimental studies using real video data sets were conducted and the results showed that our methods can yield a significant speed-up over an existing VA-file-based method and (distance with high query result quality. Furthermore, by incorporating temporal correlation of video content, our methods achieved much more efficient performance  相似文献
2.
Batch Nearest Neighbor Search for Video Retrieval   总被引:2,自引:0,他引:2  
To retrieve similar videos to a query clip from a large database, each video is often represented by a sequence of high- dimensional feature vectors. Typically, given a query video containing m feature vectors, an independent nearest neighbor (NN) search for each feature vector is often first performed. After completing all the NN searches, an overall similarity is then computed, i.e., a single content-based video retrieval usually involves m individual NN searches. Since normally nearby feature vectors in a video are similar, a large number of expensive random disk accesses are expected to repeatedly occur, which crucially affects the overall query performance. Batch nearest neighbor (BNN) search is stated as a batch operation that performs a number of individual NN searches. This paper presents a novel approach towards efficient high-dimensional BNN search called dynamic query ordering (DQO) for advanced optimizations of both I/O and CPU costs. Observing the overlapped candidates (or search space) of a pervious query may help to further reduce the candidate sets of subsequent queries, DQO aims at progressively finding a query order such that the common candidates among queries are fully utilized to maximally reduce the total number of candidates. Modelling the candidate set relationship of queries by a candidate overlapping graph (COG), DQO iteratively selects the next query to be executed based on its estimated pruning power to the rest of queries with the dynamically updated COG. Extensive experiments are conducted on real video datasets and show the significance of our BNN query processing strategy.  相似文献
3.
Mining multi-tag association for image tagging   总被引:1,自引:0,他引:1  
Automatic media tagging plays a critical role in modern tag-based media retrieval systems. Existing tagging schemes mostly perform tag assignment based on community contributed media resources, where the tags are provided by users interactively. However, such social resources usually contain dirty and incomplete tags, which severely limit the performance of these tagging methods. In this paper, we propose a novel automatic image tagging method aiming to automatically discover more complete tags associated with information importance for test images. Given an image dataset, all the near-duplicate clusters are discovered. For each near-duplicate cluster, all the tags occurring in the cluster form the cluster’s “document”. Given a test image, we firstly initialize the candidate tag set from its near-duplicate cluster’s document. The candidate tag set is then expanded by considering the implicit multi-tag associations mined from all the clusters’ documents, where each cluster’s document is regarded as a transaction. To further reduce noisy tags, a visual relevance score is also computed for each candidate tag to the test image based on a new tag model. Tags with very low scores can be removed from the final tag set. Extensive experiments conducted on a real-world web image dataset—NUS-WIDE, demonstrate the promising effectiveness of our approach.  相似文献
4.
Multiresolution Triangular Mesh (MTM) models are widely used to improve the performance of large terrain visualization by replacing the original model with a simplified one. MTM models, which consist of both original and simplified data, are commonly stored in spatial database systems due to their size. The relatively slow access speed of disks makes data retrieval the bottleneck of such terrain visualization systems. Existing spatial access methods proposed to address this problem rely on main-memory MTM models, which leads to significant overhead during query processing. In this paper, we approach the problem from a new perspective and propose a novel MTM called direct mesh that is designed specifically for secondary storage. It supports available indexing methods natively and requires no modification to MTM structure. Experiment results, which are based on two real-world data sets, show an average performance improvement of 5-10 times over the existing methods.  相似文献
5.
Research in content-based image retrieval has been around for over a decade. While the research community has successfully exploited content features such as color and texture, finding an effective shape representation and measure remains a challenging task. The shape feature is particularly crucial for the success of content-based systems as it carries meaningful semantics of the objects of interest and fits more naturally into humans’ perception of similarity. In this paper, we present our approach to use the shape feature for image retrieval. First, we introduce an effective image decomposition method called Crawling Window (CW) to distinguish the outline of each object in the image. Second, to represent each individual shape, we propose a novel representation model called component Distance Distribution Function and its measure. Traditionally, an object is represented by a set of points on the shape’s contour. Our idea is to first compute the distance between each point and the center of the object. The distance values for all points form a signal, which we call Distance Distribution Function (DDF). Each DDF is then divided into component DDFs (cDDF) by taking local signal information into account. Finally, a transformation technique is employed to generate the feature vector for each cDDF. All vectors from the cDDFs in circular order construct the final shape representation. The model is invariant to position, scaling, rotation and starting point. The similarity measure model based on the new representation is also introduced. Our extensive experiments show that our models are more effective than the existing representation model, both in the shape and the image level.
Xiaofang ZhouEmail:
  相似文献
6.
The notorious “dimensionality curse” is a well-known phenomenon for any multi-dimensional indexes attempting to scale up to high dimensions. One well-known approach to overcome degradation in performance with respect to increasing dimensions is to reduce the dimensionality of the original dataset before constructing the index. However, identifying the correlation among the dimensions and effectively reducing them are challenging tasks. In this paper, we present an adaptive Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) technique for high-dimensional indexing. Our MMDR technique has four notable features compared to existing methods. First, it discovers elliptical clusters for more effective dimensionality reduction by using only the low-dimensional subspaces. Second, data points in the different axis systems are indexed using a single B +-tree. Third, our technique is highly scalable in terms of data size and dimension. Finally, it is also dynamic and adaptive to insertions. An extensive performance study was conducted using both real and synthetic datasets, and the results show that our technique not only achieves higher precision, but also enables queries to be processed efficiently.  相似文献
7.
In this paper, we present ICICLE (Image ChainNet and Incremental Clustering Engine), a prototype system that we have developed to efficiently and effectively retrieve WWW images based on image semantics. ICICLE has two distinguishing features. First, it employs a novel image representation model called Weight ChainNet to capture the semantics of the image content. A new formula, called list space model, for computing semantic similarities is also introduced. Second, to speed up retrieval, ICICLE employs an incremental clustering mechanism, ICC (Incremental Clustering on ChainNet), to cluster images with similar semantics into the same partition. Each cluster has a summary representative and all clusters' representatives are further summarized into a balanced and full binary tree structure. We conducted an extensive performance study to evaluate ICICLE. Compared with some recently proposed methods, our results show that ICICLE provides better recall and precision. Our clustering technique ICC facilitates speedy retrieval of images without sacrificing recall and precision significantly.  相似文献
8.
In this paper, we present a novel indexing technique called Multi-scale Similarity Indexing (MSI) to index image's multi-features into a single one-dimensional structure. Both for text and visual feature spaces, the similarity between a point and a local partition's center in individual space is used as the indexing key, where similarity values in different features are distinguished by different scale. Then a single indexing tree can be built on these keys. Based on the property that relevant images have similar similarity values from the center of the same local partition in any feature space, certain number of irrelevant images can be fast pruned based on the triangle inequity on indexing keys. To remove the “dimensionality curse” existing in high dimensional structure, we propose a new technique called Local Bit Stream (LBS). LBS transforms image's text and visual feature representations into simple, uniform and effective bit stream (BS) representations based on local partition's center. Such BS representations are small in size and fast for comparison since only bit operation are involved. By comparing common bits existing in two BSs, most of irrelevant images can be immediately filtered. To effectively integrate multi-features, we also investigated the following evidence combination techniques—Certainty Factor, Dempster Shafer Theory, Compound Probability, and Linear Combination. Our extensive experiment showed that single one-dimensional index on multi-features improves multi-indices on multi-features greatly. Our LBS method outperforms sequential scan on high dimensional space by an order of magnitude. And Certainty Factor and Dempster Shafer Theory perform best in combining multiple similarities from corresponding multiple features.  相似文献
9.
In this paper, we propose a novel motion-based video retrieval approach to find desired videos from video databases through trajectory matching. The main component of our approach is to extract representative motion features from the video, which could be broken down to the following three steps. First, we extract the motion vectors from each frame of videos and utilize Harris corner points to compensate the effect of the camera motion. Second, we find interesting motion flows from frames using sliding window mechanism and a clustering algorithm. Third, we merge the generated motion flows and select representative ones to capture the motion features of videos. Furthermore, we design a symbolic based trajectory matching method for effective video retrieval. The experimental results show that our algorithm is capable to effectively extract motion flows with high accuracy and outperforms existing approaches for video retrieval.  相似文献
10.
Online video stream data are surging to an unprecedented level. Massive video publishing and sharing impose heavy demands on continuous video near-duplicate detection for many novel video applications. This paper presents an accurate and accelerated system for video near-duplicate detection over continuous video streams. We propose to transform a high-dimensional video stream into a one-dimensional Video Trend Stream (VTS) to monitor the continuous luminance changes of consecutive frames, based on which video similarity is derived. In order to do fast comparison and effective early pruning, a compact auxiliary signature named CutSig is proposed to approximate the video structure. CutSig explores cut distribution feature of the video structure and contributes to filter candidates quickly. To scan along a video stream in a rapid way, shot cuts with local maximum AI (average information value) in a query video are used as reference cuts, and a skipping approach based on reference cut alignment is embedded for efficient acceleration. Extensive experimental results on detecting diverse near-duplicates in real video streams show the effectiveness and efficiency of our method.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号