首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5653篇
  免费   302篇
  国内免费   11篇
电工技术   40篇
综合类   4篇
化学工业   1107篇
金属工艺   121篇
机械仪表   113篇
建筑科学   276篇
矿业工程   9篇
能源动力   190篇
轻工业   559篇
水利工程   50篇
石油天然气   18篇
武器工业   2篇
无线电   493篇
一般工业技术   1005篇
冶金工业   1145篇
原子能技术   36篇
自动化技术   798篇
  2023年   46篇
  2022年   39篇
  2021年   129篇
  2020年   98篇
  2019年   115篇
  2018年   153篇
  2017年   133篇
  2016年   161篇
  2015年   124篇
  2014年   177篇
  2013年   310篇
  2012年   307篇
  2011年   380篇
  2010年   273篇
  2009年   290篇
  2008年   330篇
  2007年   318篇
  2006年   268篇
  2005年   269篇
  2004年   195篇
  2003年   160篇
  2002年   166篇
  2001年   93篇
  2000年   83篇
  1999年   74篇
  1998年   152篇
  1997年   109篇
  1996年   110篇
  1995年   80篇
  1994年   67篇
  1993年   83篇
  1992年   55篇
  1991年   35篇
  1990年   50篇
  1989年   47篇
  1988年   37篇
  1987年   47篇
  1986年   45篇
  1985年   42篇
  1984年   32篇
  1983年   34篇
  1982年   36篇
  1981年   25篇
  1980年   16篇
  1979年   20篇
  1978年   22篇
  1977年   18篇
  1976年   32篇
  1975年   18篇
  1974年   12篇
排序方式: 共有5966条查询结果,搜索用时 62 毫秒
1.
Inspired by the incorporation of metallocene functionalities into a variety of bioactive structures, particularly antimicrobial peptides, we endeavored to broaden the structural variety of quaternary ammonium compounds (QACs) by the incorporation of the ferrocene moiety. Accordingly, 23 ferrocene-containing mono- and bisQACs were prepared in high yields and tested for activity against a variety of bacteria, including Gram-negative strains and a panel of clinically isolated MRSA strains. Ferrocene QACs were shown to be effective antiseptics with some displaying single-digit micromolar activity against all bacteria tested, demonstrating yet another step in the expansion of structural variety of antiseptic QACs.  相似文献   
2.
The joining of liquid-phase sintered SiC (LPS-SiC) ceramics was conducted using spark plasma sintering (SPS), through solid state diffusion bonding, with Ti-metal foil as a joining interlayer. Samples were joined at 1400 °C, under applied pressures of either 10 or 30 MPa, and with different atmospheres (argon, Ar, vs. vacuum). It was demonstrated that the shear strength of the joints increased with an increase in the applied joining pressure. The joining atmosphere also affected on both the microstructure and shear strength of the SiC joints. The composition and microstructure of the interlayer were examined to understand the mechanism. As a result, a SiC-SiC joining with a good mechanical performance could be achieved under an Ar environment, which in turn could provide a cost-effective approach and greatly widen the applications of SiC ceramic components with complex shape.  相似文献   
3.
We used perceptual and oculomotor measures to understand the negative impacts of low (phantom array) and high (motion blur) duty cycles with a high‐speed, AR‐likehead‐mounted display prototype. We observed large intersubject variability for the detection of phantom array artifacts but a highly consistent and systematic effect on saccadic eye movement targeting during low duty cycle presentations. This adverse effect on saccade endpoints was also related to an increased error rate in a perceptual discrimination task, showing a direct effect of display duty cycle on the perceptual quality. For high duty cycles, the probability of detecting motion blur increased during head movements, and this effect was elevated at lower refresh rates. We did not find an impact of the temporal display characteristics on compensatory eye movements during head motion (e.g., VOR). Together, our results allow us to quantify the tradeoff of different negative spatiotemporal impacts of user movements and make subsequent recommendations for optimized temporal HMD parameters.  相似文献   
4.
First‐order phase transitions, where one phase replaces another by virtue of a simple crossing of free energies, are best known between solids, liquids, and vapors, but they also occur in a wide range of other contexts, including even elemental magnets. The key challenges are to establish whether a phase transition is indeed first order, and then to determine how the new phase emerges because this will determine thermodynamic and electronic properties. Here it is shown that both challenges are met for the spin reorientation transition in the topological metallic ferromagnet Fe3Sn2. The magnetometry and variable temperature magnetic force microscopy experiments reveal that, analogous to the liquid–gas transition in the temperature–pressure plane, this transition is centered on a first‐order line terminating in a critical end point in the field‐temperature plane. The nucleation and growth associated with the transition is directly imaged, indicating that the new phase emerges at the most convoluted magnetic domain walls for the high temperature phase and then moves to self‐organize at the domain centers of the high temperature phase. The dense domain patterns and phase coexistence imply a complex inhomogenous electronic structure, which can yield anomalous contributions to the electrical conductivity.  相似文献   
5.
This study offers new insights into two-lift deposition of mature fine tailings under atmospheric drying. The interaction of newly added lift and former lift(s) was evaluated using column experiments in terms of volumetric water content, electrical conductivity (EC), hydraulic conductivity, geochemistry and microstructure. Water content and EC followed the same trend and decreasing of water content appears to be responsible for significant reduction in EC. Evaporation on top of the column reduced the water content to almost zero. The obtained results support the coupling between the hydraulic and chemical processes that should be considered by active operators.  相似文献   
6.
This work reports the composition dependent microstructure, dielectric, ferroelectric and energy storage properties, and the phase transitions sequence of lead free xBa(Zr0.2Ti0.8)O3-(1-x)(Ba0.7Ca0.3)TiO3 [xBZT-(1-x)BCT] ceramics, with x?=?0.4, 0.5 and 0.6, prepared by solid state reaction method. The XRD and Raman scattering results confirm the coexistence of rhombohedral and tetragonal phases at room temperature (RT). The temperature dependence of Raman scattering spectra, dielectric permittivity and polarization points a first phase transition from ferroelectric rhombohedral phase to ferroelectric tetragonal phase at a temperature (TR-T) of 40?°C and a second phase transition from ferroelectric tetragonal phase - paraelectric pseudocubic phase at a temperature (TT-C) of 110?°C. The dielectric analysis suggests that the phase transition at TT-C is of diffusive type and the BZT-BCT ceramics are a relaxor type ferroelectric materials. The composition induced variation in the temperature dependence of dielectric losses was correlated with full width half maxima (FWHM) of A1, E(LO) Raman mode. The saturation polarization (Ps) ≈8.3?μC/cm2 and coercive fields ≈2.9?kV/cm were found to be optimum at composition x?=?0.6 and is attributed to grain size effect. It is also shown that BZT-BCT ceramics exhibit a fatigue free response up to 105 cycles. The effect of a.c. electric field amplitude and temperature on energy storage density and storage efficiency is also discussed. The presence of high TT-C (110?°C), a high dielectric constant (εr ≈?12,285) with low dielectric loss (0.03), good polarization (Ps ≈?8.3?μC/cm2) and large recoverable energy density (W?=?121?mJ/cm3) with an energy storage efficiency (η) of 70% at an electric field of 25?kV/cm in 0.6BZT-0.4BCT ceramics make them suitable candidates for energy storage capacitor applications.  相似文献   
7.
8.
The use of hydrogen as a fuel is increasing exponentially, and the most economical way to store and transport hydrogen for fuel use is as a high-pressure gas. Polymers are widely used for hydrogen distribution and storage systems because they are chemically inert towards hydrogen. However, when exposed to high-pressure hydrogen, some hydrogen diffuses through polymers and occupies the preexisting cavities inside the material. Upon depressurization, the hydrogen trapped inside polymer cavities can cause blistering or cracking by expanding these cavities. A continuum mechanics–based deformation model was deployed to predict the stress distribution and damage propagation while the polymer undergoes depressurization after high-pressure hydrogen exposure. The effects of cavity size, cavity location, and pressure inside the cavity on damage initiation and evolution inside the polymer were studied. The stress and damage evolution in the presence of multiple cavities was also studied, because interaction among cavities alters the damage and stress field. It was found that all these factors significantly change the stress state in the polymer, resulting in different paths for damage propagation. The effect of adding carbon black filler particles and plasticizer on the damage was also studied. It was found that damage tolerance of the polymer increases drastically with the addition of carbon black fillers, but decreases with the addition of the plasticizer.  相似文献   
9.
The brain's astrocytes play key roles in normal and pathological brain processes. Targeting small molecules to astrocytes in the presence of the many other cell types in the brain will provide useful tools for their visualization and manipulation. Herein, we explore the functional consequences of synthetic modifications to a recently described astrocyte marker composed of a bright rhodamine-based fluorophore and an astrocyte-targeting moiety. We altered the nature of the targeting moiety to probe the dependence of astrocyte targeting on hydrophobicity, charge, and pKa when exposed to astrocytes and neurons isolated from the mouse cortex. We found that an overall molecular charge of +2 and a targeting moiety with a heterocyclic aromatic amine are important requirements for specific and robust astrocyte labeling. These results provide a basis for engineering astrocyte-targeted molecular tools with unique properties, including metabolite sensing or optogenetic control.  相似文献   
10.
Resilience in river ecosystems requires that organisms must persist in the face of highly dynamic hydrological and geomorphological variations. Disturbance events such as floods and droughts are postulated to shape life history traits that support resilience, but river management and conservation would benefit from greater understanding of the emergent effects in communities of river organisms. We unify current knowledge of taxonomic‐, phylogenetic‐, and trait‐based aspects of river communities that might aid the identification and quantification of resilience mechanisms. Temporal variations in river productivity, physical connectivity, and environmental heterogeneity resulting from floods and droughts are highlighted as key characteristics that promote resilience in these dynamic ecosystems. Three community‐wide mechanisms that underlie resilience are (a) partitioning (competition/facilitation) of dynamically varying resources, (b) dispersal, recolonization, and recruitment promoted by connectivity, and (c) functional redundancy in communities promoted by resource heterogeneity and refugia. Along with taxonomic and phylogenetic identity, biological traits related to feeding specialization, dispersal ability, and habitat specialization mediate organism responses to disturbance. Measures of these factors might also enable assessment of the relative contributions of different mechanisms to community resilience. Interactions between abiotic drivers and biotic aspects of resource use, dispersal, and persistence have clear implications for river conservation and management. To support these management needs, we propose a set of taxonomic, phylogenetic, and life‐history trait metrics that might be used to measure resilience mechanisms. By identifying such indicators, our proposed framework can enable targeted management strategies to adapt river ecosystems to global change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号