首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1318篇
  免费   135篇
  国内免费   5篇
电工技术   24篇
综合类   5篇
化学工业   337篇
金属工艺   57篇
机械仪表   62篇
建筑科学   7篇
能源动力   55篇
轻工业   140篇
水利工程   7篇
石油天然气   2篇
无线电   232篇
一般工业技术   307篇
冶金工业   30篇
原子能技术   53篇
自动化技术   140篇
  2023年   3篇
  2022年   6篇
  2021年   27篇
  2020年   16篇
  2019年   34篇
  2018年   46篇
  2017年   38篇
  2016年   62篇
  2015年   56篇
  2014年   73篇
  2013年   86篇
  2012年   83篇
  2011年   127篇
  2010年   77篇
  2009年   97篇
  2008年   92篇
  2007年   78篇
  2006年   56篇
  2005年   38篇
  2004年   42篇
  2003年   55篇
  2002年   38篇
  2001年   34篇
  2000年   28篇
  1999年   28篇
  1998年   21篇
  1997年   10篇
  1996年   15篇
  1995年   10篇
  1994年   12篇
  1993年   13篇
  1992年   2篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1985年   6篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1967年   1篇
排序方式: 共有1458条查询结果,搜索用时 15 毫秒
1.
Food Science and Biotechnology - A new analytical method was developed for the simultaneous determination of seven food additives (Ponceau 4R, Allura Red AC, Amaranth, 4-hydroxymethyl benzoic acid,...  相似文献   
2.
Composite anodes of nano-sized Ni and Ba(Zr0.85Y0.15)O3-δ (BZY) were fabricated by infiltrating a single precursor solution of BZY and Ni into the BZY scaffold, and decreasing the calcination temperature to 1173 K. This decrease in the fabrication temperature of the Ni-cermet anode prevents the chemical reaction between the electrolyte and nickel, thus preventing a reduction in the conductivity of the electrolyte. By optimizing the amount of Ni in the Ni-cermet and infiltrating additional catalysts such as CeO2 and Pd, the non-ohmic ASR of the Ni-cermet anode could be optimized. This resulted in a smaller non-ohmic ASR of anode than one that was fabricated by the conventional co-sintering method. Consequently, a high power density of 790 mW/cm2 at 973 K can be obtained from electrolyte-supported cells.  相似文献   
3.
Using first principles calculations, we study fundamental mechanism of spontaneous reduction reaction of Eu3+ to Eu2+ in eutectic LiCl‐KCl molten salt. We decouple the reaction Gibbs free energy into enthalpy and entropy contributions by using rigorous thermodynamic formalism. Key structural features of the solvation shell are characterized by the radial distribution function and the coordination number. Compared with Eu2+, the Eu3+ ion has a more rigid framework of the solvation shells, corroborating its stronger electrostatic interaction with neighboring ligands of Cl? ions and a more favorable state on the aspect of enthalpy. Computations on vibrational frequency, however, pose significant contribution of vibrational entropy to the reaction Gibbs free energy for the reduction. Vibration frequency of Eu2+ is smaller than that of Eu3+, driving a more positive change of the entropy in the reduction reaction. Furthermore, an Eu2+ diffuses more quickly than an Eu3+ in the LiCl‐KCl molten salt with switching mechanism of ligand Cl? ions in the solvation shell. Our results propose that the spontaneity of the reduction reaction is driven by the entropic contribution by overcoming the penalty of the reaction enthalpy.  相似文献   
4.
The synthesis of large‐area TiS2 thin films is reported at temperatures as low as 500 °C using a scalable two‐step method of metal film deposition followed by sulfurization in an H2S gas furnace. It is demonstrated that the lowest‐achievable sulfurization temperature depends strongly on the oxygen background during sulfurization. This dependence arises because Ti? O bonds present a substantial kinetic and thermodynamic barrier to TiS2 formation. Lowering the sulfurization temperature is important to make smooth films, and to enable integration of TiS2 and related transition metal dichalcogenides—including metastable phases and alloys—into device technology.  相似文献   
5.
Generally, the NiO composite anode becomes porous after reduction. To infiltrate additional catalysts such as Pd into the NiO-composite anode before reducing NiO to Ni, a porous NiO composite anode for protonic ceramic fuel cells (PCFCs) was fabricated in this study. The porous NiO composite was fabricated by adding graphite as a pore former along with CuO as a sintering agent. The addition of graphite increased the porosity of the NiO composite anode but resulted in poor sinterability, which was addressed by adding CuO as a sintering agent to the NiO composite anode. The Pd catalyst was added to the NiO-composite anode before reducing NiO to Ni. The composite anode for PCFC with three components, namely Ni, protonic ceramics, and a Pd catalyst, was obtained by reducing NiO to Ni during the measurement. The addition of the Pd catalyst improved the anode performance in methane fuel and hydrogen fuel by enhancing the catalytic activity for the electrochemical reaction on the surface.  相似文献   
6.
7.
8.
9.
10.
Regulations, such as the Health Insurance Portability and Accountability Act (HIPAA), establish standards to protect patients' medical records from security breaches. Insiders' prosocial misbehaviour within healthcare organisations can cause significant damage to relevant stakeholders. Such behaviour without malicious intention needs to be better understood and carefully managed from the perspective of prosocial behaviour. For this study, a research model was developed that includes the factors influencing student nurses' intention to disclose patient health information. The model was empirically tested with nursing students in South Korea with a scenario-based experiment. We find that both altruistic (impact on others) and egoistic (impact on the self) motivations are significantly important in raising situational empathy. On the other hand, an egoistic motivation (impact on the self) significantly affects people's perception of their responsibility, which mediates the relationship between situational empathy and prosocial intention to disclose. The implications of our findings are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号