首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61463篇
  免费   5560篇
  国内免费   2908篇
电工技术   3825篇
技术理论   2篇
综合类   5417篇
化学工业   8151篇
金属工艺   2222篇
机械仪表   3926篇
建筑科学   9344篇
矿业工程   1482篇
能源动力   4041篇
轻工业   6032篇
水利工程   1342篇
石油天然气   3326篇
武器工业   771篇
无线电   3363篇
一般工业技术   5826篇
冶金工业   3031篇
原子能技术   449篇
自动化技术   7381篇
  2024年   236篇
  2023年   1023篇
  2022年   1922篇
  2021年   2369篇
  2020年   2413篇
  2019年   2062篇
  2018年   1954篇
  2017年   2239篇
  2016年   2408篇
  2015年   2469篇
  2014年   4022篇
  2013年   3840篇
  2012年   4468篇
  2011年   4743篇
  2010年   3528篇
  2009年   3560篇
  2008年   3185篇
  2007年   4022篇
  2006年   3482篇
  2005年   2993篇
  2004年   2507篇
  2003年   2125篇
  2002年   1691篇
  2001年   1387篇
  2000年   1042篇
  1999年   835篇
  1998年   578篇
  1997年   482篇
  1996年   463篇
  1995年   315篇
  1994年   240篇
  1993年   195篇
  1992年   154篇
  1991年   135篇
  1990年   98篇
  1989年   71篇
  1988年   54篇
  1987年   47篇
  1986年   27篇
  1985年   40篇
  1984年   52篇
  1983年   36篇
  1982年   26篇
  1980年   51篇
  1965年   20篇
  1964年   28篇
  1963年   27篇
  1961年   23篇
  1956年   22篇
  1955年   30篇
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
1.
2.
乡村产业中的化石能源设备逐渐被电能技术替代,引起了乡村负荷波动增大、部分时段产生集中高负荷的问题。为了解决以上问题,将低品位清洁能源应用至乡村的茶叶生产中,针对烘茶全过程的工艺要求提出了跨临界CO2热泵烘茶技术;并以某茶叶生产乡村为对象,对其代表台区的全年日用电量及产茶日负荷进行了分析,得出采用CO2热泵烘茶后其负荷得到大幅度削减,整体可降低至原负荷的39.6%~46.8%,峰值负荷与平时负荷的比值由原本的13.6降至5.4~6.2。跨临界CO2热泵应用至农产品生产中可有效缓解乡村供电压力。  相似文献   
3.
目的建立超高效液相色谱-串联质谱法同时测定糕点中6种常用合成甜味剂的分析方法。方法选用超纯水作为提取溶剂,涡旋和超声提取后,低温离心,取部分上清液加入正己烷除脂,Waters Atlantis■T3色谱柱、甲醇-5 mmol/L甲酸铵(含0.1%甲酸)作为流动相、亲水亲脂平衡型固相萃取柱HLB(hydrophile-lipophile balance)净化。结果6种甜味剂在质量浓度为10~200 ng/mL的曲线范围内呈良好线性关系,相关系数r均大于0.999,平均加标回收率在85.0%-98.2%之间,相对平均偏差(relative standard deviation,RSD)为1.3%~6.7%。结论该方法具有前处理简单、灵敏度高、检测速度快等优点,适合糖精钠、甜蜜素、三氯蔗糖、阿斯巴甜、阿力甜、纽甜的检测,但不适用于安赛蜜的检测。  相似文献   
4.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   
5.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
6.
This paper carefully evaluates the electrocatalytic activity of Sr2FeMo0.5Mn0.5O6 (SFMM) double perovskite as a candidate to substitute the state-of-the-art Ni/YSZ fuel electrode. The electrochemical performance of a 40% SFMM/CGO composite electrode was studied in CO/CO2 and H2 with different oxygen partial pressure. Two different cell configurations are prepared at a relatively low temperature of 800 °C to increase the electrochemically active surface area. The cell was supported with a 150 μm 10Sc1CeSZ electrolyte in the first configuration. The cell in the second configuration was made by applying a 400 nm thin 8YSZ layer on 150 μm CGO electrolyte to improve the electrolyte ionic conductivity. Improving catalytic activity with increasing oxygen partial pressure is a key characteristic of the developed electrode. The polarization resistance of about 0.34 and 0.56 Ω cm2 at 750 °C in 3%H2O + H2 and 60% CO/CO2 makes this electrode a promising candidate for SOCs application.  相似文献   
7.
Software is a central component in the modern world and vastly affects the environment’s sustainability. The demand for energy and resource requirements is rising when producing hardware and software units. Literature study reveals that many studies focused on green hardware; however, limited efforts were made in the greenness of software products. Green software products are necessary to solve the issues and problems related to the long-term use of software, especially from a sustainability perspective. Without a proper mechanism for measuring the greenness of a particular software product executed in a specific environment, the mentioned benefits will not be attained. Currently, there are not enough works to address this problem, and the green status of software products is uncertain and unsure. This paper aims to identify the green measurements based on sustainable dimensions in a software product. The second objective is to reveal the relationships between the elements and measurements through empirical study. The study is conducted in two phases. The first phase is the theoretical phase, where the main components, measurements and practices that influence the sustainability of a software product are identified. The second phase is the empirical study that involved 103 respondents in Malaysia investigating current practices of green software in the industrial environment and further identifying the main sustainability dimensions and measurements and their impact on achieving green software products. This study has revealed seven green measurements of software product: Productivity, Usability, Cost Reduction, Employee Support, Energy Efficiency, Resource Efficiency and Tool Support. The relationships are statistically significant, with a significance level of less than 0.01 (p = 0.000). Thus, the hypothesised relationships were all accepted. The contributions of this study revolve around the research perspectives of the measurements to attain a green software product.  相似文献   
8.
To enhance the tribological performance of Si3N4/TiC ceramics, MoS2/PTFE composite coatings were deposited on the ceramic substrate through spraying method. The micrographs and basic properties of the MoS2/PTFE coated samples were investigated. Dry sliding friction experiments against WC/Co ball were performed with the coated ceramics and traditional ones. These results showed that the composite coatings could significantly reduce the friction coefficient of ceramics, and protect the substrate from adhesion wear. The primary tribological mechanisms of the coated ceramics were abrasive wear, coating spalling and delamination, and the tribological property was transited from slight wear to serious wear with the increase of load because of the lower surface hardness and shear strength. The possible mechanisms for the effects of MoS2/PTFE composite coatings on the friction performance of ceramics were discussed.  相似文献   
9.
10.
Biomass gasification technology under microwave irradiation is a new and novel method, and the energy conversion performances during the process play a guiding role in improving the energy conversion efficiencies and developing the gasification simulation models. In order to improve the energy utilization efficiency of microwave biomass gasification system, this study investigated and presented the energy conversion performances during biomass gasification process under microwave irradiation, and these were materialized through detailing (a) the energy conversion performance in the microwave heating stage, and (b) the energy conversion performance in the microwave assisted biomass gasification stage. Different forms of energies in the biomass microwave gasification process were calculated by the method given in this study based on the experimental data. The results showed that the useful energy (energy in silicon carbide (SiC), 18.73 kJ) accounted for 31.22% of the total energy input (electrical energy, 60.00 kJ) in the heating stage, and the useful energy (energy in the products, 758.55 kJ) accounted for 63.41% of the total energy input (electrical and biomass energy, 1196.28 kJ) in the gasification stage. During the whole biomass gasification process under microwave irradiation, the useful energy output (energy in the products, 758.55 kJ) accounted for 60.38% of the total energy input (electrical and biomass energy, 1256.28 kJ), and the energy in the gas (523.40 kJ) product played a dominate role in product energy (758.55 kJ). The energy loss mainly included the heat loss in the gas flow (89.20 kJ), magnetron loss (191.80 kJ) and microwave dissipation loss (198.00 kJ), which accounted for 7.10%, 15.27% and 15.76% of the total energy, respectively. The contents detailed in this study not only presented the energy conversion performances during microwave assisted gasification process but also supplied important data for developing gasification simulation models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号