首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280730篇
  免费   28120篇
  国内免费   14718篇
电工技术   20123篇
技术理论   31篇
综合类   28297篇
化学工业   38549篇
金属工艺   15338篇
机械仪表   14851篇
建筑科学   33439篇
矿业工程   14078篇
能源动力   10114篇
轻工业   19905篇
水利工程   11652篇
石油天然气   14415篇
武器工业   3826篇
无线电   23857篇
一般工业技术   24676篇
冶金工业   14427篇
原子能技术   2346篇
自动化技术   33644篇
  2024年   1356篇
  2023年   4331篇
  2022年   7418篇
  2021年   9581篇
  2020年   9530篇
  2019年   7547篇
  2018年   7031篇
  2017年   8608篇
  2016年   10095篇
  2015年   10780篇
  2014年   18405篇
  2013年   16873篇
  2012年   19901篇
  2011年   21531篇
  2010年   15827篇
  2009年   16409篇
  2008年   15181篇
  2007年   18592篇
  2006年   17048篇
  2005年   14760篇
  2004年   12359篇
  2003年   10893篇
  2002年   8941篇
  2001年   7642篇
  2000年   6529篇
  1999年   5092篇
  1998年   3809篇
  1997年   3334篇
  1996年   2730篇
  1995年   2334篇
  1994年   2004篇
  1993年   1413篇
  1992年   1208篇
  1991年   872篇
  1990年   759篇
  1989年   701篇
  1988年   399篇
  1987年   283篇
  1986年   230篇
  1985年   253篇
  1984年   188篇
  1983年   149篇
  1982年   99篇
  1981年   103篇
  1980年   109篇
  1979年   50篇
  1978年   28篇
  1977年   30篇
  1959年   31篇
  1951年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
High-purity mullite ceramics, promising engineering ceramics for high-temperature applications, were fabricated using transient liquid phase sintering to improve their high-temperature mechanical properties. Small amounts of ultrafine alumina or silica powders were uniformly mixed with the mullite precursor depending on the silica-alumina ratio of the resulting ceramics to allow for the formation of a transient liquid phase during sintering, thus, enhancing densification at the early stage of sintering and mullite formation by the reaction between additional alumina and the residual glassy phase (mullitization) at the final stage of sintering. The addition of alumina powder to the silica-rich mullite precursor resulted in a reaction between the glassy silica and alumina phases during sintering, thereby forming a mullite phase without inhibiting densification. The addition of fine silica powder to the mullite single-phase precursor led to densification with an abnormal grain growth of mullite, whereas some of the added silica remained as a glassy phase after sintering. The resulting mullite ceramics prepared using different powder compositions showed different sintering behaviors, depending on the amount of alumina added. Upon selecting an optimum process and the amount of alumina to be added, the pure mullite ceramics obtained via transient liquid phase sintering exhibited high density (approximately 99%) and excellent high-temperature flexural strength (approximately 320 MPa) at 1500 °C in air. These results clearly demonstrate that pure mullite ceramics fabricated via transient liquid phase sintering with compositions close to those of stoichiometric mullite could be a promising process for the fabrication of high-temperature structural ceramics used in an ambient atmosphere. The transient liquid phase sintering process proposed in this study could be a powerful processing tool that allows for the preparation of superior high-temperature structural ceramics used in the ambient processing atmosphere.  相似文献   
2.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
3.
采用直流磁控溅射和后退火氧化工艺在p型GaAs单晶衬底上成功制备了n-VO_2/pGaAs异质结,研究了不同退火温度和退火时间对VO_2/GaAs异质结性能的影响,并分析其结晶取向、化学组分、膜层质量以及光电特性。结果表明,在退火时间2 h和退火温度693 K下能得到相变性能最佳的VO_2薄膜,相变前后电阻变化约2个数量级。VO_2/GaAs异质结在308 K、318 K和328 K温度下具有较好的整流特性,对应温度下的阈值跳变电压分别为6.9 V、6.6 V和6.2 V,该结果为基于VO_2相变特性的异质结光电器件的设计与应用提供了可行性。  相似文献   
4.
It is clear that the entire world have to research, develop, demonstrate and plan for alternative energy systems for shorter term and also longer term. As a clean energy carrier, hydrogen has become increasingly important. It owes its prestige to the increase within the energy costs as a result of the equivocalness in the future availability. Two phase flow and hydrogen gas flow dynamics effect on performance of water electrolysis. Hydrogen bubbles are recognized to influence energy and mass transfer in gas-evolving electrodes. The movement of hydrogen bubbles on the electrodes in alkaline electrolysis is known to affect the reaction efficiency. Within the scope of this research, a physical modeling for the alkaline electrolysis is determined and the studies about the two-phase flow model are carried out for this model. Internal and external forces acting on the resulting bubbles are also determined. In this research, the analytical solution of two-phase flow analysis of hydrogen in the electrolysis is analyzed.  相似文献   
5.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
6.
Polymer electrets have revealed great potential application in electromechanical devices because of the low weight, large quasi-piezoelectric sensitivity, and excellent flexibility. For an electret, a permanent and macroscopic electric field exists on the surface, principally led by a macroscopic electrostatic charge on the surface or a net orientation of polar groups inside the object. Here, progress in the development of polymer electrets is reviewed. After a brief retrospect of the research courses and those typical polymer electrets that are classified into fluorine polymer and nonfluorine polymer, we present a survey on the charging methods, including corona, soft X-ray, contact, thermal and monoenergetic particle beams. The latest representative applications (i.e., power harvesting, sensors, field effect transistors, and biomedicine) based on polymer electrets are also summarized. Finally, we complete this review with a discussion on perspectives and challenges in this field.  相似文献   
7.
边坡位移的时间序列曲线存在复杂的非线性特性,传统的预测模型精度不足以满足预测要求。为此提出了基于变分模态分解的鸟群优化-核极限学习机的预测模型,并用于河北省某水泥厂的边坡位移预测。该方法首先采用VMD把边坡位移序列分解为一系列的有限带宽的子序列,再对各子序列分别采用相空间重构并用核极限学习机预测,采用鸟群算法优化相空间重构的嵌入维度和KELM中惩罚系数和核参数三个数值,以取得最优预测模型。最后将各个子序列预测值叠加,得到边坡位移的最终预测值。结果表明:和KELM、BSA-KELM、EEMD-BSA-KELM模型相比,基于VMD的BSA-KELM预测精度更高,为边坡位移的预测提供一种有效的方法。  相似文献   
8.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   
9.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
10.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号