首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设计了一种应用于EEPROM的片内电荷泵电路系统。该电路基于Dickson电荷泵结构,通过使用稳定的参考电压驱动压控振荡电路,从而产生了占空比小于50%的精确时钟,提高了电荷泵升压速度;通过使用调压电路,限制并稳定了输出电压。HSPICE仿真结果显示:在5 V电源电压下,时钟频率高达2.085 MHz。电荷泵仅需要56.256μs就可以输出15.962 V的高压。电荷泵的电压上升时间快,性能优越。  相似文献   

2.
设计了一款应用于双电源系统中的电荷泵电路结构,通过内部电平转化与控制电路,在双电源系统中实现不同逻辑电平控制产生高压的目的,为EEPROM存储单元提供擦写所需高压.电路采用ZMOS管作为传输管,提高传输效率;在电荷泵不工作时,所有子电路关闭,实现零功耗设计.仿真结果显示,电路输出电压精度高、上电速度快、驱动能力强.电路采用SMIC 0.18μm CMOS工艺流片,已实际应用于数字电位计芯片设计中,输出高压稳定,达到设计要求,性能良好.  相似文献   

3.
覃仕成  谢亮  金湘亮 《微电子学》2016,46(3):344-347
设计了一款应用于MEMS麦克风的电荷泵电路。在动态的电荷传输开关型电荷泵中,增加了时钟电平倍增电路和负反馈电路,使得电荷泵在工艺偏差、温度以及电源电压变化时能够输出稳定的高压。电路基于0.3 μm CMOS工艺实现,Spectre仿真结果表明,在1.6~3.6 V电源电压范围及所有工艺角下,电荷泵能够输出偏差在±5%以内的14 V高压,与相同条件下的传统静态电荷传输型电荷泵相比,升压单元减少了33%,有效提高了效率,节省了面积。  相似文献   

4.
设计了一款基于电荷泵高压内电源的恒定跨导轨到轨运算放大器.输入级采用PMOS差分对结构,通过电荷泵产生高于电源电压的输入级内电源,使运放在轨到轨输入范围能正常工作并保持输入跨导恒定.电荷泵电路所需的时钟信号通过内部振荡器电路产生,再通过电压自举电路和时序电路产生所需电平的非交叠开关控制信号,最后利用时间交织结构输出连续稳定的高压内电源.在电荷泵实现中还采用了辅助开关结合跟随运放的结构降低了主开关在切换时的毛刺.该运放在折叠式共源共栅结构中使用增益自举结构提高了总体增益,输出级采用class AB类输出结构实现轨到轨输出.该运算放大器基于0.5μm CMOS工艺完成电路与版图设计,仿真结果表明,在5 V电源电压下,直流增益为150.76 dB,单位增益带宽为53.407 MHz,相位裕度为96.1°,输入级跨导在轨到轨输入共模范围内的变化率为0.001 25%.  相似文献   

5.
一种高效率的适合于低功耗应用的电荷泵电路   总被引:1,自引:1,他引:0  
冯鹏  李昀龙  吴南健 《半导体学报》2010,31(1):015009-5
设计实现了一种高效率的电荷泵电路。利用电容和晶体管对电荷传输开关进行偏置来消除开关管阈值电压的影响。同时,通过对开关管的的衬底进行动态的偏置使得在电荷传输期间当开关管打开时其阈值电压较低,在开关管关断时其阈值电压较高。该电荷泵电路的效率得到了提高。基于0.18μm,3.3V标准CMOS工艺实现了该电路。在每级电容为0.5pF,时钟频率为780KHz,电源电压为2V的情况下,测得的8级电荷泵的输出电压为9.8V。电荷泵电路和时钟驱动电路从电源处总共消耗了2.9μA的电流。该电荷泵电路适合于低功耗的应用。  相似文献   

6.
设计了一种基于传统Dickson结构的PMOS管传输型电荷泵电路。电路通过衬底电位跟随器实现PMOS管传输,避免了传输过程中阈值电压损失;通过电阻分压反馈网络、控制振荡器输出达到稳压的目的;在电荷泵不工作时,各个子电路关断,实现低功耗设计。仿真结果表明,电路效率高,上电时间短,纹波小;采用SMIC 0.18μm工艺流片,电路达到设计要求,输出高压稳定,驱动能力强,在1M EEPROM电路芯片中得到实际应用。  相似文献   

7.
设计了一款低噪声、低功耗的电荷泵,适用于相变存储器驱动电路中的锁相环时钟。与其它结构的电荷泵相比较,此款电路对时钟馈通与电荷注入等干扰免疫力强。根据相变存储器对驱动电路低噪声的性能要求,本电路具有低的热噪声和1/f噪声。仿真结果表明输出电压在0℃~80℃温度范围内最大仅有11mV的偏差,其与PFD所产生的相位噪声在1MHz频率下为-102dB。电路采用40nm CMOS工艺设计,电源电压2.5V,功耗0.125mW,芯片面积60 m×55 m。  相似文献   

8.
Flash存算阵列在工作模式下需要用到不同内部驱动电压,因此基于当前各类Dickson型电荷泵,设计了一种针对Flash存算阵列的可调电荷泵。采用一种新型输出级的交叉耦合设计,解决了传统电荷泵最后一级阈值电压导致的低泵送效率的问题,并通过辅助MOS管增强了传统电荷泵中体源二极管对反向漏电流的抑制能力。55 nm CMOS工艺下的仿真结果表明,与改进前的电荷泵相比,在电源电压1.8 V和300μA的工作电流下,中间级反向漏电流减少了17.5%,输出级反向漏电流减少了73.1%。无反馈调节时,主电荷泵最高输出电压为9.56 V,电压效率达88.51%。PFM可调制模式下,可重构电荷泵能实现输出电压切换。  相似文献   

9.
设计了一款应用于flash存储单元编程操作的高压双电荷泵电路系统,可同时提供正负高压。该系统基于传统的Dickson结构,采用提高传输管栅压的方法进行改进设计,降低电压传输损失,提高工作效率。同时,通过使能时序的控制,保证电路系统的稳定性;通过基准与分压电路的应用,保证输出电压的高精确度。仿真结果显示,该电路输出电压精度高、纹波小、效率高,已实际应用于芯片设计中,采用SMIC 0.18μm flash工艺流片,输出正负高压稳定,达到设计要求,性能良好。  相似文献   

10.
MEMS麦克风需要一个高于10 V的偏置电压才能工作,这个高电压一般由内部电荷泵电路产生.在传统Dickson电荷泵结构的基础上,提出一种改进的电荷泵结构.它首先将非重叠时钟的幅度加倍,然后用幅度加倍的时钟作为电荷泵的驱动时钟,取得了明显的升压效果.Hspice仿真结果表明,电源电压为1.4V时,6级二极管-电容升压单元就可以实现10.7674 V的输出电压.与传统的Dickson升压电路相比,改进型电荷泵的升压单元减少了4级,且其核心部分的面积减小了21%,功耗降低了40%(参考SMIC 0.35 μm CMOS工艺).  相似文献   

11.
设计了一种低功耗、宽电源电压范围的电机驱动器。通过采用高效率泵电路,设计新型的电荷泵供电方式,使得电机驱动电路能够实现宽电源电压范围和低功耗。该驱动器保证功率管在低压下仍具有较低的导通电阻和较大的输出驱动电流,而在高压情况下功率管栅源不会被击穿。设计电荷泵时钟控制电路,使得驱动器具有更低的功耗。基于SMIC 180 nm BCD工艺完成设计。仿真结果表明,该电机驱动器的电机电源输入范围为0~15 V,逻辑电源范围为1.8~5.5 V,且静态功耗为284.5μA。  相似文献   

12.
提出了一种可驱动H桥功率电路的电荷泵.为了简化电路设计和确保电路稳定性,本电荷泵采用两倍压电荷泵电路拓扑结构,通过加入两路反馈控制电路来提高电荷泵充电电流和输出电压值的控制精度以及电源转换效率.设计采用0.35μm BCD工艺,通过Cadence Spectre仿真器表明,在负载电流为5mA条件下,电荷泵正常工作时输出电压范围广(10~40V),电源转换效率最高达到91%,输出电压建立所需时间为579μs.样片实测结果显示,在不同输入电压条件下,输出电压纹波控制在385mV以下.  相似文献   

13.
唐有为  段吉海  徐卫林 《微电子学》2014,(6):750-753, 758
介绍了RFID无源电子标签中EEPROM的基本结构与工作原理。分析了NMOS管Dickson电荷泵及其由NMOS管构成的栅压自举电荷泵的特点与不足。针对当前电荷泵存在的电荷倒流、体效应问题,设计了一种改进输入时钟的电荷泵电路。通过对比仿真后发现,改进设计的电荷泵能减少电荷倒流、提高传输效率。已成功应用于RFID芯片的EEPROM中。  相似文献   

14.
《电子与封装》2017,(7):21-24
针对现有电荷泵存在的体效应、电荷回流等问题,提出一种高增益低纹波的电荷泵电路。该电荷泵采用两路互补的结构,减小了输出电压纹波;使用电位选择电路消除体效应,并使用两相低电平不交叠时钟避免电荷回流,提高了电压增益和转换效率。Hspice仿真结果表明,在级数同为5级和电流负载相同的情况下,文中提出的电荷泵相比现有电荷泵具有更高的输出电压和更小的电压纹波。  相似文献   

15.
为了有效降低传统电荷泵电路的充放电过冲电流,提高电荷泵输出控制电压的稳定性,提出、设计并实现了一种高速低过冲的电荷泵结构,该电路适用于高速锁相环及时钟数据恢复电路.电路在电源电压为1.2 V的0.13 μm CMOS工艺下设计实现,并对版图数据进行了HSPICE模拟,其结果表明,电路在2.5 GHz的速度下能很好的工作,同时电流过冲相比传统电荷泵下降了70%.  相似文献   

16.
提出了一种新颖的双模式高集成开关电容电荷泵。该电荷泵集成高频振荡器、电平移位、逻辑驱动以及4个功率MOSFET开关。与传统电荷泵相比,该电路可以工作在单电源以及双电源两种模式。单电源模式下,输出电压为-VCC;双电源模式下,输出电压为-3×VCC。电路采用0.35μm BCD工艺实现。测试结果表明:室温时,单电源模式和双电源模式下电荷泵输出电流分别为36 mA和80 mA时输出电压分别为-3.07 V和-12.10 V。在-55℃到125℃温度范围内,单电源模式和双电源模式下电荷泵输出电流分别为24 mA和50 mA时输出电压分别低于-3.06 V和-12.35 V。该电荷泵在两种模式下工作特性良好,已应用于相关工程项目。  相似文献   

17.
余瑞容  张启东 《电子科技》2019,32(12):11-16
针对传统电平移位电路输出电压范围不理想和不稳定的缺点,设计了一种具有高稳定性、低功耗的两级电平移位电路。该电路第一级采用固定偏置电流结构,消除NMOS与PMOS电学参数的依赖性并提高稳定性。通过引入扩宽输出电压范围的第二级电路结构,为高端PMOS提供可靠的栅驱动电压。仿真结果表明,所设计的电平移位电路实现了低压转高压功能,且输出范围满足高边栅驱动要求。该电路能较好地应用于高压电机驱动电路,实现单极性和双极性两种驱动控制。  相似文献   

18.
提出了一种基于Dickson电荷泵结构的片上升压电路,由两相非交叠时钟驱动,并与电平转换单元配合使用.该电路将最后一级的传输管NMOS管替换为PMOS管,再由电平转换单元产生的电压来控制该PMOS管的栅端电压,使之在导通时彻底打开,从而消除该级的阈值电压损失,提高了输出电压.  相似文献   

19.
刘彦  张世林  赵毅强 《半导体学报》2012,33(6):065006-5
本文提出了一种应用于嵌入式EEPROM的低功耗和高效率的高电产生电路。低功耗的实现是基于电容分压电路和控制时钟的稳压电路技术;高效率是由于采用了零阈值Vth MOSFET和电荷传输开关技术的电荷泵。该高电压电路采用0.35 μm CMOS工艺流片。测试结果表明,高电产生电路的功耗约150.48 μW和电荷泵效率高达83.3%,因此高电产生电路也可广泛用于低功耗Flash中。  相似文献   

20.
程梦璋  景为平   《电子器件》2007,30(4):1226-1229
针对消除传统电荷泵电路存在的MOS开关的电荷注入效应,时钟馈通效应,电荷泄露和充放电电流失配等产生的锁相环的相位偏差问题,设计了两种新型的电荷泵电路.这两种电路的设计和仿真采用了0.6 μm CMOS工艺,电源电压为5 V,功耗分别为0.65 mW和0.7 mW.仿真结果表明,两种新型电荷泵电路的转换速度得到了提高,输出电压近似于电源电压到地的全摆幅并具有稳定的充放电步长,可用于高速锁相环电路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号