首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
6H-SiC高压肖特基势垒二极管   总被引:2,自引:2,他引:0  
在可商业获得的 N型 6 H - Si C晶片上 ,通过化学气相淀积 ,进行同质外延生长 ,在此结构材料上 ,通过热蒸发 ,制作 Ni/6 H- Si C肖特基势垒二极管 .测量并分析了肖特基二极管的电学特性 ,结果表明 ,肖特基二极管具有较好的整流特性 :反向击穿电压约为 45 0 V,室温下 ,反向电压 VR=- 2 0 0 V时 ,反向漏电流 JL=5× 10 - 4 A· cm- 2 ;理想因子为 1.0 9,肖特基势垒高度为 1.2 4— 1.2 6 e V ,开启电压约为 0 .8V  相似文献   

2.
在N型6H-SiC外延片上,通过热蒸发,制作Ti/6H-SiC肖特基势垒二极管(SBD).通过化学气相淀积,进行同质外延生长,详细测量并分析了肖特基二极管的电学特性,该肖特基二极管具有较好的整流特性.反向击穿电压约为400V,室温下,反向电压VR=200V时,反向漏电流JR低于1×10-4A/cm2.采用Ne离子注入形成非晶层,作为边缘终端,二极管的击穿电压增加到约为800V.  相似文献   

3.
在可商业获得的N型6H-SiC晶片上,通过化学气相淀积,进行同质外延生长,在此结构材料上,通过热蒸发,制作Ni/6H-SiC肖特基势垒二极管.测量并分析了肖特基二极管的电学特性,结果表明,肖特基二极管具有较好的整流特性:反向击穿电压约为450V,室温下,反向电压VR=-200V时,反向漏电流JL=5×10-4A*cm-2;理想因子为1.09,肖特基势垒高度为1.24—1.26eV,开启电压约为0.8V.  相似文献   

4.
深槽Ni(Pt)Si/Si肖特基二极管特性研究   总被引:1,自引:1,他引:0  
采用15nmNi/1.5nmPt/15nmNi/Si结构在600~850°C范围内经RTP退火的方法形成Ni(Pt)Si薄膜,其薄膜电阻低且均匀一致。比形成较低电阻率的NiSi薄膜的温度提高了150°C。在850°CRTP退火后形成的Ni(Pt)Si/Si肖特基势垒二极管I-V特性很好,其势垒高度ΦB为0.71eV,改善了肖特基二极管的稳定性。实验表明在肖特基二极管中引入深槽结构,可以大幅度地提高其反向击穿电压。在外延层浓度为5E15cm-3时,深槽器件的击穿电压可以达到80V,比保护环器件高约30V。  相似文献   

5.
采用自主外延的4H-SiC外延片,利用PECVD生长的SiO2做场板介质,B+离子注入边缘终端技术,制造了Ti/4H-SiC肖特基势垒二极管.测试结果表明,Ti/4H-SiC肖特基势垒二极管的理想因子n=1.08,势垒高度(ψe)=1.05eV,串联电阻为6.77mΩ·cm2,正向电压为4V时,电流密度达到430A/cm2.反向击穿电压大于1.1kV,室温下,反向电压为1.1kV时,反向漏电流为5.96×10-3 A/cm2.  相似文献   

6.
陈刚  李哲洋  柏松  任春江 《半导体学报》2007,28(9):1333-1336
采用自主外延的4H-SiC外延片,利用PECVD生长的SiO2做场板介质,B 离子注入边缘终端技术,制造了Ti/4H-SiC肖特基势垒二极管.测试结果表明,Ti/4H-SiC肖特基势垒二极管的理想因子n=1.08,势垒高度(ψe)=1.05eV,串联电阻为6.77mΩ·cm2,正向电压为4V时,电流密度达到430A/cm2.反向击穿电压大于1.1kV,室温下,反向电压为1.1kV时,反向漏电流为5.96×10-3 A/cm2.  相似文献   

7.
基于数值仿真结果,采用结势垒肖特基(JBS)结构和多重场限环终端结构实现了3 300 V/50 A 4H-SiC肖特基二极管(SBD),所用4H-SiC外延材料厚度为35 μm、n型掺杂浓度为2× 1015cm-3.二极管芯片面积为49 mm2,正向电压2.2V下电流达到50 A,比导通电阻13.7 mΩ· cm2;反偏条件下器件的雪崩击穿电压为4 600 V.基于这种3 300 V/50 A 4H-SiC肖特基二极管,研制出3 300 V/600 A混合功率模块,该模块包含24只3 300 V/50 A Si IGBT与12只3 300 V/50 A 4H-SiC肖特基二极管,SiC肖特基二极管为模块的续流二极管.模块的动态测试结果为:反向恢复峰值电流为33.75 A,反向恢复电荷为0.807 μC,反向恢复时间为41 ns.与传统的Si基IGBT模块相比,该混合功率模块显著降低了器件开关过程中的能量损耗.  相似文献   

8.
研究了低压化学气相淀积方法制备的n- 3C- Si C/p- Si(10 0 )异质结二极管(HJD)在30 0~4 80 K高温下的电流密度-电压(J- V)特性.室温下HJD的正反向整流比(通常定义为±1V外加偏压下)最高可达1.8×10 4 ,在4 80 K时仍存在较小整流特性,整流比减小至3.1.在30 0 K温度下反向击穿电压最高可达2 2 0 V .电容-电压特性表明该Si C/Si异质结为突变结,内建电势Vbi为0 .75 V.采用了一个含多个参数的方程式对不同温度下异质结二极管的正向J-V实验曲线进行了很好的拟和与说明,并讨论了电流输运机制.该异质结构可用于制备高质量异质结器件,如宽带隙发射极Si C/Si HBT  相似文献   

9.
6H-SiC高反压台面pn结二极管   总被引:1,自引:0,他引:1  
在可商业获得的单晶 6 H- Si C晶片上 ,通过化学气相淀积 ,进行同质外延生长 ;并在此 6 H - Si C结构材料上 ,利用反应离子刻蚀和接触合金化技术 ,制作台面 pn结二极管 .详细测量并分析了器件的电学特性 ,测量结果表明此 6 H - Si C二极管在室温、空气介质中 ,- 10 V时 ,漏电流密度为 2 .4× 10 - 8A/cm2 ,在反向电压低于 6 0 0 V及接近30 0℃高温下都具有良好的整流特性 .  相似文献   

10.
无坑洞n-3C-SiC/p-Si(100)的LPCVD外延生长及其异质结构特性   总被引:3,自引:0,他引:3  
在MBE/CVD高真空系统上,利用低压化学气相淀积( L PCVD)方法在直径为5 0 mm的单晶Si( 10 0 )衬底上生长出了高取向无坑洞的晶态立方相碳化硅( 3 C- Si C)外延材料,利用反射高能电子衍射( RHEED)和扫描电镜( SEM)技术详细研究了Si衬底的碳化过程和碳化层的表面形貌,获得了制备无坑洞3 C- Si C/Si的优化碳化条件,采用霍尔( Hall)测试等技术研究了外延材料的电学特性,研究了n- 3 C- Si C/p- Si异质结的I- V、C- V特性及I- V特性对温度的依赖关系.室温下n- 3 C- Si C/p- Si异质结二极管的最大反向击穿电压达到2 2 0 V,该n- 3 C- Si C/p- Si异质结构可用于制  相似文献   

11.
深硅刻蚀工艺是制造沟槽肖特基器件的关键技术.Si深槽的深度影响肖特基反向击穿电压,深槽的垂直度影响多晶Si回填效果,侧壁平滑度及深槽底部长草现象对器件的耐压性能影响显著.采用SF6/O2常温刻蚀工艺刻蚀Si深槽.研究了工艺压力、线圈功率、SF6/O2比例以及下电极功率等参数对沟槽深度均匀性和垂直度的影响.得到了使Si深槽形貌为槽口宽度略大于槽底,侧壁光滑,且沟槽深度均匀性为2.3%左右的工艺条件.利用该刻蚀工艺可实现沟槽多晶Si无缝回填.该工艺条件成功应用于沟槽肖特基器件制作中,反向击穿电压达到58 V,反向电压通48 V,漏电流为11.2 μA,良率达到97.55%.  相似文献   

12.
在n型4H-SiC单晶导电衬底上制备了具有MPS(merged p-i-n Schottky diode)结构和JTE(junction termination extension)结构的肖特基势垒二极管。通过高温离子注入及相应的退火工艺,进行了区域性p型掺杂,形成了高真空电子束蒸发Ni/Pt/Au复合金属制备肖特基接触,衬底溅射Ti W/Au并合金做欧姆接触,采用场板和JTE技术减小高压电场集边效应。该器件具有良好的正向整流特性和较高的反向击穿电压。反向击穿电压可以达到1300V,开启电压约为0.7V,理想因子为1.15,肖特基势垒高度为0.93eV,正向电压3.0V时,电流密度可以达到700A/cm2。  相似文献   

13.
改善反向击穿电压和正向导通电阻之间的矛盾关系一直以来都是功率半导体器件的研究热点之一。介绍了一种超结肖特基势垒二极管(SJ-SBD),将p柱和n柱交替构成的超结结构引入肖特基势垒二极管中作为耐压层,在保证正向导通电阻足够低的同时提高了器件的反向耐压。在工艺上通过4次n型外延和4次选择性p型掺杂实现了超结结构。基于相同的外延层厚度和相同的外延层杂质浓度分别设计和实现了常规SBD和SJ-SBD,测试得到常规SBD的最高反向击穿电压为110 V,SJ-SBD的最高反向击穿电压为229 V。实验结果表明,以超结结构作为SBD的耐压层能保证正向压降等参数不变的同时有效提高击穿电压,且当n柱和p柱中的电荷量相等时SJ-SBD的反向击穿电压最高。  相似文献   

14.
通过硅 (111)衬底淀积的单层 Co或 Co/ Ti双金属层在不同退火温度的固相反应 ,在硅上形成制备了多晶和外延 Co Si2 薄膜 .用电流 -电压和电容 -电压 (I- V/ C- V)技术在 90 K到室温的温度范围内测量了 Co Si2 / Si肖特基接触特性。用肖特基势垒不均匀模型分析了所测得的 I- V特性 ,在较高温度下 (≥~ 2 0 0 K)或较低温度的较大偏压区域 ,I- V曲线能用热激发和在整个结面积上势垒高度的高斯分布模型描述 .而在较低温度的较小偏压区域 ,电流由流过一些小势垒高度微区的电流决定 ,从而在低温 I- V曲线上在约 10 - 7A处有一个“曲折”.在室温下 ,从 I-V曲线得到的多晶 Co Si2 / Si的势垒高度为约 0 .5 7e V.对外延 Co Si2 ,势垒高度依赖于最后退火温度 ,当退火温度从 70 0℃升到 90 0℃ ,势垒高度从 0 .5 4e V升高到 0 .6 0 e V.  相似文献   

15.
为提高传统肖特基二极管的击穿电压,减小了器件的漏电流,提高芯片利用率,文中设计研制了适合于裸片封装的新型肖特基势垒二极管(SBD)。利用Silvaco Tcad软件模拟,在器件之间采用PN结隔离,器件周围设计了离子注入形成的保护环,实现了在浓度和厚度分别为7.5×1012 cm-3和5 μm的外延层上,制作出了反向击穿电压45 V和正向导通压降0.45 V的3 A/45 V肖特基二极管,实验和仿真结果基本吻合。此外,还开发了改进SBD结构、提高其电特性的工艺流程。  相似文献   

16.
基于JBS整流二极管理论,详细介绍了一种Si基JBS整流二极管设计方法、制备工艺及测试结果。在传统肖特基二极管(SBD)有源区,利用光刻和固态源扩散工艺形成掺硼的蜂窝状结构,与n型衬底形成pn结,反向偏置时抑制了因电压增加引起的金属-半导体势垒高度降低,减小了漏电流;采用离子注入形成两道场限环的终端结构,有效防止了边缘击穿,提高了反向击穿电压。对制备的器件使用Tektronix 370B可编程特性曲线图示仪进行了I-V特性测试,结果表明本文设计的Si基JBS整流二极管正向压降VF=0.78 V(正向电流IF=5 A时),反向击穿电压可达340 V。  相似文献   

17.
Mo/4H-SiC肖特基势垒二极管的研制   总被引:1,自引:0,他引:1  
采用微电子平面工艺,射频溅射Mo作肖特基接触,电子束热蒸发金属Ni作欧姆接触,三级场限环终端表面保护.并通过对Mo接触进行合理的高温退火,不降低理想因子和反向耐压特性情况下,有效控制肖特基势垒高度在1.2~1.3 eV范围内,成功研制出高耐压低损耗Mo/4H-SiC肖特基势垒二极管.其特性测试结果为:击穿电压Vb为3000V,串联导通电阻Ron为9.2mΩ·cm2,Vb2/Ron为978MW/cm2.  相似文献   

18.
采用微电子平面工艺,射频溅射Mo作肖特基接触,电子束热蒸发金属Ni作欧姆接触,三级场限环终端表面保护.并通过对Mo接触进行合理的高温退火,不降低理想因子和反向耐压特性情况下,有效控制肖特基势垒高度在1.2~1.3 eV范围内,成功研制出高耐压低损耗Mo/4H-SiC肖特基势垒二极管.其特性测试结果为:击穿电压Vb为3000V,串联导通电阻Ron为9.2mΩ·cm2,Vb2/Ron为978MW/cm2.  相似文献   

19.
利用模拟软件MEDICI对碳化硅混合PiN/Schottky二极管(MPS)的输运机理及伏安特性进行了模拟.输运机理的模拟结果表明MPS的工作原理是正向肖特基起主要作用,而反向时PN结使漏电流大大减小.伏安特性的模拟结果表明MPS的正向压降小,电流密度大,在2V正向偏压下达10-5A/μm,反向漏电流小,击穿电压高(2000V左右),可以通过改变肖特基和PN结的面积比来调整MPS的性能,与硅MPS、碳化硅PN结以及碳化硅肖特基二极管相比具有明显的优势,是理想的功率整流器.  相似文献   

20.
利用模拟软件MEDICI对碳化硅混合PiN/Schottky二极管(MPS)的输运机理及伏安特性进行了模拟.输运机理的模拟结果表明MPS的工作原理是正向肖特基起主要作用,而反向时PN结使漏电流大大减小.伏安特性的模拟结果表明MPS的正向压降小,电流密度大,在2V正向偏压下达10-5A/μm,反向漏电流小,击穿电压高(2000V左右),可以通过改变肖特基和PN结的面积比来调整MPS的性能,与硅MPS、碳化硅PN结以及碳化硅肖特基二极管相比具有明显的优势,是理想的功率整流器.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号