首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fan  Junfeng  Zhang  Yanyan  Tan  Szesze  Li  Fengjuan  Zhou  Manyu  Masayoshi  Saito  Eizo  Tatsumi  Li  Lite 《Journal of food science》2006,71(5):C285-C291
ABSTRACT:  Soy protein hydrolysate was conjugated with curdlan through the naturally occurring Maillard reaction to extend its application in food processing. The gel-forming and emulsifying properties of soy protein hydrolysates were significantly improved ( P < 0.05) by conjugation with curdlan. The soy protein hydrolysate–curdlan conjugate (SPHCC)–soy protein isolate (SPI) mixed gel had a much thicker network than the soy protein hydrolysate and SPI mixed gel judged from scanning electron microscopic images. The improvement of gelling properties of soy protein hydrolysate by curdlan-conjugate was attributed to both the decrease in the repulsive forces among soy protein hydrolysates and the increase in the solubility. The covalent binding of soy protein hydrolysates and curdlan also showed a profound effect on the antioxidative activity of the soy protein hydrolysates. The higher antioxidative activity of SPHCC was related to the peptide reductants produced from the Maillard reaction and the higher emulsifying property of SPHCC. The conjugates of soy protein hydrolysate and curdlan can be used as a functional food additive having excellent gel-forming, emulsifying properties and antioxidative activity.  相似文献   

2.
大豆分离蛋白酶法有限水解过程动力学研究   总被引:4,自引:0,他引:4  
在pH8 .0 ,温度 50℃条件下 ,以蛋白酶Alcalase作用于大豆分离蛋白 ,研究相应的有限水解 (x <0 .6)过程的动力学特征。对实验结果的分析显示 ,水解过程中底物与酶之间的相互作用引起酶的抑制和失活。在此基础上提出了相应的反应动力学实验方程 ,并推导出底物存在临界浓度 ,在酶浓度为 5.93× 10 3AU/ml条件下 ,其值为 96.77mg/ml。  相似文献   

3.
酶解大豆分离蛋白乳化特性的研究   总被引:8,自引:3,他引:8  
利用枯草芽孢杆菌AS1.398中性蛋白酶对大豆分离蛋白进行水解,并利用浊度法测定了不同水解度、不同pH条件下酶解大豆分离蛋白的乳化特性,结果表明:AS1.398蛋白酶对大豆分离蛋白的最大水解度为36%,水解度为9%时乳化活性最大,水解度为3%是乳化稳定性最好。同一水解度时,pH越高,蛋白质的乳化特性越好。水解度为3%、9%、15%的大豆分离蛋白在pH等于或高于5.0时的乳化活性明显地高于原蛋白质,且水解度为3%时乳化稳定性也明显地高于原蛋白质。  相似文献   

4.
磷酸化大豆分离蛋白质功能特性的研究   总被引:2,自引:0,他引:2  
本文采用三氯氧磷(POCl3)对大豆分离蛋白(SPI)进行磷酸化改性,并研究了磷酸化前后SPI功能特性的变化。结果表明:磷酸化SPI的溶解性、乳化性以及粘度等功能特性都有不同程度的改变。  相似文献   

5.
Antioxidant activity of soy protein (SP) and its hydrolyzed peptides has been widely reported. During scavenging of radicals, these antioxidative compounds would be oxidatively modified, but their fate is not understood. The objective of this study was to evaluate the structural characteristics of SP hydrolysates (SPHs), compared to intact SP, when used to neutralize hydroxyl radicals (?OH). SPHs with degree of hydrolysis (DH) 1 to 5 were prepared with Alcalase. Antioxidant activity of SPHs was confirmed by lipid oxidation inhibition measured with thiobarbituric acid‐reactive substances, ability to scavenge 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid) radicals, and ferrous ion chelation capability. Oxidation of SPHs was initiated by reaction with ?OH generated from 0.1 mM FeCl3, 20 mM H2O2, and 1.0 mM ascorbate. After oxidative stress, carbonyl content of SPHs increased by 2‐ to 3‐fold and sulfhydryl groups decreased by up to 42% compared to nonoxidized samples (P < 0.05). Methionine, histidine, and lysine residues were significantly reduced as a result of inactivating ?OH (P < 0.05). Attenuated total reflectance‐Fourier transform infrared and circular dichroism spectroscopy suggested the conversion of helical structure to strands and turns. Oxidatively modified SPHs had a lower intrinsic fluorescence intensity but similar solubility when compared to nonoxidized samples. These structural changes due to ?OH stress may impact the ingredient interaction and functionality of SPHs in food products.  相似文献   

6.
ABSTRACT Native and briefly heated (85 °C for 3 min) soy protein isolates (SPI) were partially hydrolyzed (4% DH) by Alcalase® and Flavourzyme™ before incorporation into a pork myofibril isolate (MPI) system. The hydrolysis of soy protein enhanced its interaction with MPI, leading to a decreased thermal stability of both soy and muscle proteins. Alcalase SPI hydrolysates, when compared with nonhydrolyzed SPI, improved viscoelastic properties and hardness of MPI gels, while Flavourzyme SPI hydrolysates had an adverse effect. Hydrolyzed SPI augmented emulsifying properties of MPI; the specific efficacy depended upon the type of enzymes used, the SPI:MPI ratio, and whether SPI was heated before hydrolysis.  相似文献   

7.
Effects of combined extrusion pre-treatment and controlled enzymatic hydrolysis on the physico-chemical properties and emulsifying properties of soy protein isolates (SPI) have been investigated. Results showed that extrusion pre-treatment caused a marked improvement in the accessibility of SPI to enzymatic hydrolysis, resulting in changes in degree of hydrolysis (DH), protein solubility (PS), surface hydrophobicity (H0) and molecular weight distributions (MWD) for ESPIH (extrusion pre-treated SPI hydrolysates). It was observed that emulsion systems formed by control SPI or SPIH (SPI hydrolysates) (20% v/v oil, 1.6% w/v emulsifier, and pH 7.0) were unstable over a quiescent storage period of 21 days, due to bridging flocculation and creaming. However, ESPIH (9.1% DH) was capable of producing a very fine emulsion (d32 = 0.42 μm, d43 = 2.01 μm) which remained stable over a long term quiescent storage. Various surface properties of ESPIH products have also been studied in relation to DH and emulsifying functionalities. It was suggested that significantly increased protein solubility and decreased molecular weight could be the main reasons for the greatly improved emulsifying capability of ESPIH. This study demonstrated that modified soy protein could be an excellent emulsifying agent for food and other applications. It also demonstrated that combined extrusion pre-treatment and enzymatic hydrolysis could be a highly effective method for functionality modification of globular proteins.  相似文献   

8.
氨作碱性剂对醇法大豆浓缩蛋白改性   总被引:1,自引:0,他引:1  
以氨作碱性剂,通过均质、物化改性、喷雾干燥等方法对醇法大豆浓缩蛋白(SPC)进行改性,以期获得功能性较好醇法大豆浓缩蛋白。实验表明,醇法大豆浓缩蛋白加入氨水后经均质、物化改性、喷雾干燥等步骤可获得溶解性、凝胶性、乳化性等功能性较佳大豆浓缩蛋白。  相似文献   

9.
研究了不同相对分子质量的多元醇对大豆蛋白喷雾干燥的影响.结果表明:添加多元醇后喷雾干燥所得大豆蛋白的性质发生了明显变化;随着多元醇相对分子质量的增加,大豆蛋白的氮溶指数提高,乳化活性提高,粒径减小,热稳定性提高,热变性程度降低.  相似文献   

10.
本文研究了大豆蛋白酶解产物(Soy protein hydrolysate,SPH)对187、495和885三种发酵剂酸奶发酵过程中p H值变化和贮藏过程中乳清析出、流变特性和质构特性的影响。结果表明,SPH对3种酸奶均具有一定的促发酵效果,其中对以187和495为发酵剂的p H值下降速度较慢的酸奶促发酵效果更明显。贮藏过程中,SPH可有效减缓酸奶乳清析出,其中对以885为发酵剂的乳清析出率最高的酸奶作用最明显,降低率达到49.35%。此外,SPH可有效提高187和495发酵剂酸奶的表观黏度和触变环面积,有利于酸奶结构的恢复。通过对酸奶第7 d流变和质构特性的进一步研究,SPH可显著提高3种酸奶的稠度和零剪切黏度,降低其流动指数、柔量和粘性指数,从而有效改善3种酸奶的流变和质构特性,提高酸奶在低应力下稳定性,降低其在高应力下形变破坏程度。  相似文献   

11.
Several functional properties have been attributed to soy protein hydrolysates (SPHs); however, their gut fermentation needs to be investigated. This study aimed to determine the effect of hypo-allergic pepsin-educed SPH on the growth of gut microbiota, SCFA and BCFA production in a pH-controlled, stirred, batch culture fermentation system compared with commercial SPH and soy protein isolate (SPI). The results showed that all substrates affected gut bacteria. SPH selectively increased the number of lactobacilli (log 9.61 to log 9.84) at 72-h fermentation, but not for bifidobacteria. This is in accordance with increased BCFAs yield of 15.54 ± 0.00 mm (isobutyrate) and 465.59 ± 1.42 mm (isovalerate). The gut microbial balance index (GMBI) of SPH was 0.23, thus suggesting its gut microbial modulation. Therefore, SPH has potential for modulation or balance of gut microbiota, which may be used as functional ingredient for emerging market of nutraceuticals and nutri-pharmaceutical industry.  相似文献   

12.
大豆蛋白作为一种安全的乳化剂常被应用于食品乳化体系,通过物理法、酶法和化学法可诱导大豆蛋白的结构变化,改善大豆蛋白乳化性。本文将简要介绍改性大豆蛋白乳化能力及乳化稳定机理,分析影响乳化特性的因素。详细探讨物理法(热处理,超声法,高压处理)、酶法(水解酶,交联酶)和化学法(糖基化法)改性后大豆蛋白的乳化特性改善。最后针对大豆蛋白作为乳化剂在食品行业的应用与发展进行深入讨论。  相似文献   

13.
ABSTRACT: Endo-protease treatments achieving low degrees of hydrolysis (DH 2% and 4%) were used to improve functional properties of hexane-extracted soy flour (HESF), extruded-expelled partially defatted soy flour (EESF), ethanol-washed soy protein concentrate (SPC), and soy protein isolate (SPI). These substrates had protein dispersibility indices ranging from 11% to 89%. Functional properties, including solubility profile (pH 3 to 7), emul-sification capacity and stability, foaming capacity and stability, and apparent viscosity were determined and related to surface hydrophobicity and peptide profiles of the hydrolysates. Protein solubilities of all substrates increased as DH increased. Emulsification capacity and hydrophobicity values of the enzyme-modified HESF and EESF decreased after hydrolysis, whereas these values increased for SPC and SPI. Emulsion stability was improved for all 4% DH hydrolysates. Hydrolyzed SPC had lower foaming capacity and stability. For substrates other than SPC, foaming properties were different depending on DH. Hydrolysis significantly decreased the apparent viscosities regardless of substrate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated differences in the molecular weight profiles of the hydrolysates. HESF and EESF, which had high proportions of native-state proteins, showed minor changes in the peptide profile due to hydrolysis compared with SPC and SPI.  相似文献   

14.
研究马来酸酐酰化改性对大豆分离蛋白功能性质的影响。结果表明:随着马来酸酐用量的增大,大豆分离蛋白的酰化度增大,等电点降低;随着酰化度的增大,大豆分离蛋白构象松散,色氨酸残基的微环境趋向于暴露于水的状态,亲水性增强;经马来酸酐酰化改性后,大豆分离蛋白的溶解性、发泡性、乳化性及乳化稳定性均显著提升,但泡沫稳定性有所下降。研究表明,马来酸酐酰化改性大豆分离蛋白是一种非常有前景的功能性食品添加剂。  相似文献   

15.
Heat-denatured soy protein was hydrolyzed by Alcalase to 2.0% or 4.0% degree of hydrolysis (DH), heated again at 100°C and deamidated with B. circulans peptidoglutaminase. The extent of deamidation was 6.0% and 8.2% for 2.0 DH hydrolysates and 12.8% and 16.0% for 4.0 DH hydrolysates heated for 15 and 30 min, respectively. Deamidation increased protein solubility and substantially enhanced emulsifying activity under mildly acidic (pH 4–6) as well as alkaline conditions. Deamidation improved emulsion stability and foaming power of heat-denatured hydrolysed soy proteins. Enzymatically deamidated soy protein hydrolysates had improved functional properties compared to nondeamidated hydrolysates and the native soy protein.  相似文献   

16.
The functional acid-precipitated soy protein (SAPP)–dextran conjugate was prepared by dry-heated storage at 60 °C under 79% relative humidity (RH) for 5 days through Maillard reaction between the ε-amino of lysine in soy proteins and the reducing-end carbonyl residue in the dextran. The covalent attachment of dextran to SAPP was confirmed by SDS-polyacrylamide gel electrophoresis and gel filtration chromatography. Functional properties of soy protein depend on the structural and aggregation characteristics of their major components (storage globulins 7S and 11S). The conjugate seemed to be predominantly formed by 7S, and the acidic subunits of 11S in soy protein. The emulsifying properties of the SAPP–dextran conjugate were about four times higher than those of SAPP. The solubility of the protein was not enhanced as a result of preheating, but rather it was not decreased when the conjugated protein was heated at 90 °C for 20 min due to the presence of the polysaccharide. The excellent emulsifying properties of SAPP–dextran conjugate were maintained even at pH 3.0 and were further improved at pH 10.0. The object of Maillard reaction is to guarantee the suitable reaction degree, and the resulting soluble conjugate can have excellent emulsifying properties.  相似文献   

17.
The effect of xanthan gum (XG) on solubility and emulsifying properties of soy protein isolate (SPI) was evaluated. The solubility of SPI was increased by addition of XG (p < 0.05). The emulsifying activity of SPI-XG was 4 times higher than that of SPI or XG alone (p < 0.05) and similar to that of bovine serum albumin (BSA) (P > 0.05). The emulsifying stability of SPI-XG dispersions was respectively 3 and 2 times higher than that of SPI and BSA (p < 0.05). The solubility and emulsifying properties of SPI-XG dispersions were stable over a wide range of pH (3.0 to 9.0), ionic strength (0.1 to 1.0M NaCl), and heat (85°C, 1 hr).  相似文献   

18.
采用木瓜蛋白酶水解不同浓度的大豆分离蛋白,研究了抗坏血酸对较低水解度(DH为3.7%)和较高水解度(DH为8.9%)酶解产物黏度、发泡性、发泡稳定性、乳化性和乳化稳定性的影响.结果表明:在水解度为3.7%的、浓度为7%的大豆分离蛋白酶解液中添加0.3%抗坏血酸,体系的黏度最大、乳化性最强、乳化稳定性最高;在水解度为8.9%的、浓度为3%的大豆分离蛋白酶解液中添加0.3%抗坏血酸,体系的发泡性最大;在水解度为3.7%的、浓度为7%的大豆分离蛋白酶解液中添加0.5%抗坏血酸,体系的泡沫体积比最大.  相似文献   

19.
The functionality of membrane processed soy concentrate was very similar to soy flour in terms of solubility and water hydration capacity. The high emulsifying activity index of soy flour is believed to be reflective of its higher solubility, while surface hydrophobicity is believed to be responsible for an equally high emulsifying activity index in acid precipitated soy isolate. The proteins of soy flour and membrane soy concentrate seem to have most of their hydrophobic residues buried in the interior, while they are exposed in acid precipitated soy isolate. Heating resulted in a decrease in solubility but improved the hydration capacity and emulsifying activity of both soy flour and membrane soy concentrate. The essential amino acid profile of concentrate was comparable to current commercial isolates manufactured by acid precipitation. The majority of the polypeptides present in soy flour were observed to be present in the concentrate. The membrane soy concentrate was determined to have the least soybean aroma when compared to both soy flour and acid precipitated soy isolate.  相似文献   

20.
Modified Soy Proteins with Improved Foaming and Water Hydration Properties   总被引:8,自引:0,他引:8  
Soy proteins were modified by alkali treatment at pH 10.0, followed by papain hydrolysis. Solubility, water hydration capacity (WHC), surface hydrophobicity, foaming and emulsifying properties of unmodified, alkali-treated, and papain-modified soy protein (PMSP) were compared. PMSP exhibited higher solubility (100% at pH > 7.0), WHC (3.13) and hydrophobicity (40.8) than unmodified soy protein which had solubility 68.5%, WHC 0.21, and hydrophobicity 8.1. The PMSP had foaming capacity (22.0 mL) similar to egg white (21.2 mL) at pH 7.0; and enhanced foam stability (36.4) compared to the unmodified control (32.9). In general, alkali-treated soy had lower functional properties. Emulsifying properties of PMSP and alkali treated soy were unchanged by the modification. PMSP could be used as an egg white substitute in foaming applications at neutral pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号