首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
薄膜太阳能电池的研究进展   总被引:2,自引:1,他引:1  
薄膜太阳能电池是缓解能源危机的新型光伏器件。评述了薄膜太阳能电池的优缺点,主要介绍了薄膜硅太阳能电池、多元化合物薄膜太阳能电池和有机薄膜太阳能电池的研究现状,总结了它们各自在价格成本、光电转换效率及对环境影响等方面的特点,并对其发展趋势进行了展望。  相似文献   

2.
介绍了一种功能薄膜微细图形制备新方法—化学修饰溶胶-凝胶法。该方法的特点是在溶胶-凝胶制膜过程中引入化学修饰法,从而赋予薄膜以感光特性。利用该特性制备了微细图形,简化了工艺流程,并可以获得具有微米级的功能薄膜微细图形。概述了这种方法制备薄膜微细图形的原理、工艺流程以及主要影响因素,并对其在光波导薄膜、铁电薄膜和透明导电氧化物薄膜微细图形制备领域的研究情况进行了综合评述。最后对该方法的研究趋势进行了展望。  相似文献   

3.
掺Al ZnO柔性透明导电薄膜研究进展   总被引:2,自引:0,他引:2  
柔性透明导电薄膜ZAO具有优异的光电性能且资源丰富、成本低、对环境无污染,成为当前的研究热点.总结了近年来对柔性衬底材料处理的方法,分析了柔性透明导电薄膜的研究历史和现状.介绍了柔性透明导电薄膜ZAO的结构、光电特性、典型制备方法和应用前景.评述了柔性ZAO薄膜的研究现状,并对其近期研究和应用工作进行了展望.  相似文献   

4.
简要介绍了纳米晶硅薄膜的微结构表征方法,重点讨论了PECVD制备方法中工艺参数对薄膜结构的影响,并探讨了氢在薄膜形成和生长中的作用。通过优化氢稀释率、衬底温度、反应气压、激励功率和激发频率等工艺参数可提高纳米晶硅薄膜的晶化率并改善薄膜质量。结合喇曼光谱、X射线衍射谱、傅里叶红外光谱和高分辨透射电镜等表征方法可深入研究薄膜形成机理,对进一步探索薄膜光电特性有重要意义。分析了等离子体化学气相沉积(PECVD)制备方法中各工艺参数对薄膜质量和沉积速率的影响,指出其存在的问题,并探寻了今后的研究方向。  相似文献   

5.
研究了交流测试信号振幅对SrTiO3薄膜介电性质的影响,并比较研究了不同氧空位浓度的SrTiO3薄膜介电性质随测试信号振幅的变化规律。经研究发现,测试信号振幅对高氧空位浓度钛酸锶薄膜的相对介电常数有明显影响,而对低氧空位浓度钛酸锶薄膜的相对介电常数影响较小。运用薄膜极化响应机理对这一实验现象进行了解释。  相似文献   

6.
柔性透明导电薄膜ZAO   总被引:4,自引:2,他引:2  
随着电子器件向小型化和轻便化方向发展,柔性衬底的透明导电薄膜有望成为硬质衬底透明导电薄膜的更新换代产品,因此其研究备受关注.柔性透明导电薄膜ZAO具有优异的光电性能且资源丰富、成本低、对环境无污染,成为当前的研究热点.总结了近年来对柔性衬底材料处理的方法,介绍了柔性透明导电薄膜ZAO的结构和光电特性.评述了柔性ZAO薄膜的研究现状,并对其近期研究和应用工作做了展望.  相似文献   

7.
在优化薄膜制备工艺的基础上,通过实验对Cu、CuNi薄膜的电阻率与T型薄膜热电偶(TFTC)灵敏度之间的关系进行了研究。首先,通过设计正交试验,以Cu、CuNi薄膜电阻率为考察指标,得到了影响电阻率的主次因素以及各工艺参数对薄膜电阻率的影响规律。然后根据实验结果确定工艺参数条件,制备出了薄膜电阻率不同的3个T型薄膜热电偶,并对其灵敏度进行了实验标定。标定结果表明:T型薄膜热电偶的薄膜电阻率越小,其灵敏度越大。  相似文献   

8.
场发射阴极金刚石薄膜的制备方法有很多,本文是利用微波等离子化学气相沉积的方法制备薄膜,文中详细介绍了正交分解法实验制备金刚石薄膜的过程。并对薄膜进行扫描电镜、拉曼光谱、X射线实验,分析了其形貌与结构;用场发射二级结构研究薄膜的场发射性能,简单分析了金刚石薄膜的成因和场发射的性能。  相似文献   

9.
在纯平的陶瓷衬底上面,利用磁控溅射方法镀上一层金属钛。对金属钛层进行表面缺陷处理后,放入微波等离子体化学气相沉积腔中,利用正交实验方法制备出场发射性能最优的薄膜,通过扫描电镜、X射线衍射仪、拉曼光谱仪等仪器,研究了薄膜的微观表面形态、结构组成等,得到了该薄膜是球状微米金刚石薄膜的结论。并进一步研究了最优场发射薄膜的发射机理。  相似文献   

10.
利用Sol-Gel的方法制备了多孔二氧化硅薄膜。通过优化薄膜制备工艺,实现了多孔二氧化硅薄膜厚度在450nm~3000nm范围内可控,薄膜孔率为59%。用FTIR光谱分析了不同热处理温度下多孔二氧化硅薄膜的化学结构。研究了多孔二氧化硅薄膜的介电常数、介电损耗、漏电流等电学性能,结果表明多孔二氧化硅薄膜本征的介电常数为1.8左右,是典型的低介电常数材料。并通过原子力显微镜对薄膜的表面形貌进行了表征。  相似文献   

11.
本文介绍了直流磁控溅射淀积Si薄膜的镀膜工艺,研究了Si薄膜的光学特性(包括透射率光谱曲线、光学吸收、光学常数)和电阻率,通过对薄膜的X射线能谱图和透射衍射图等研究、观察,了解了磁控溅射Si薄膜的晶相结构,以及它们经加热处理后的变化情况,并加以讨论。  相似文献   

12.
本文概要介绍了国外对极性聚合物压电薄膜换能器的研究应用情况,并详细介绍了三种具有典型研究方向的聚合物压电薄膜换能器的结构特点、制作工艺、性能指标及优缺点。  相似文献   

13.
实验利用瞬态电热技术测量出镀在聚酰亚胺(PI)基底表面的6. 4 nm金薄膜面内方向的导热系数、导电系数和洛伦兹数,并研究了PI薄膜基底的热处理温度与时间对金薄膜导热、导电性能的影响。研究结果表明,PI基底可以促进金薄膜面内方向的热传导与电传导。PI薄膜基底表面金薄膜导热、导电性能最强,适合应用在柔性电子领域中。当对PI薄膜基底的热处理时间为1 h时,随着热处理温度从50℃升到200℃,金薄膜的导热、导电系数呈下降趋势。当热处理温度为200℃时,随着热处理时间从0 h升到6 h,金薄膜的导热、导电性能先下降后上升,并在6 h后趋于稳定。  相似文献   

14.
徐华腾 《电子科技》2011,24(7):148-151
采用磁控溅射方法,探索ZnO薄膜制备的最佳工艺。研究了氧氩比、基片温度,对晶粒质量的影响,以及表面电阻与溅射时间之间的关系,使薄膜具有高电阻率,并研究了激活前后光暗电流的关系,满足薄膜在紫外探测器领域的应用。  相似文献   

15.
研究了在氩氧气氛下近空间升华沉积CdTe的技术.发展了在表面十分平整的玻璃衬底上沉积优质CdTe薄膜的方法,对比了在玻璃衬底和CdS薄膜上CdTe薄膜的结构特征.通过研究氧分压对CdTe薄膜择优取向的影响,证实了在恰当的近空间升华沉积过程中,两种衬底上的CdTe薄膜具有相同的结构.研究了玻璃衬底上CdTe薄膜的电学与光学性质,观察了后处理对上述薄膜性质的影响,并研制出了效率达13.38%的小面积CdTe薄膜太阳电池.  相似文献   

16.
详细研究了衬底温度对超声喷雾热分解工艺制备的大面积绒面SnO2:F薄膜的影响和薄膜微结构与薄膜电学、光学性能之间的关系。试验曲线和SEM图的研究结果表明,将衬底温度从370℃提高到470℃以上薄膜结晶程度大大提高,晶粒尺寸明显增大;温度在470℃左右绒度达到13%。文章同时对超声喷雾热分解工艺制备大面积绒面SnO2:F薄膜做了工艺探索,并将实验制得的薄膜用于制备非晶硅薄膜电池,其效率达到了6.46%。  相似文献   

17.
氩氧气氛下沉积的CdTe薄膜及太阳电池的性质   总被引:9,自引:2,他引:7  
研究了在氩氧气氛下近空间升华沉积CdTe的技术.发展了在表面十分平整的玻璃衬底上沉积优质CdTe薄膜的方法,对比了在玻璃衬底和CdS薄膜上CdTe薄膜的结构特征.通过研究氧分压对CdTe薄膜择优取向的影响,证实了在恰当的近空间升华沉积过程中,两种衬底上的CdTe薄膜具有相同的结构.研究了玻璃衬底上CdTe薄膜的电学与光学性质,观察了后处理对上述薄膜性质的影响,并研制出了效率达1338%的小面积CdTe 薄膜太阳电池.  相似文献   

18.
本文主要介绍了电致变色显示中a-WO_3薄膜的制备和热处理工艺,并对WO_3薄膜的密度、结构、电阻率、光学透过率、薄膜的吸收系数和薄膜的表面结构等进行了分析研究.以便较好地掌握WO_3薄膜的制作工艺,使之获得较好的电致变色显示性能.  相似文献   

19.
减薄膜厚有利于提高PtSi红外探测器的量子效率。本文研究了膜厚减薄工艺对薄膜连续性的影响。用XRD观察物相,SEM、TEM研究薄膜连续性,并给出理论解释,实验表明用混合生长(S-K)模式能形成超薄连续薄膜。  相似文献   

20.
Z扫描法测单壁碳纳米管薄膜非线性特性的研究   总被引:1,自引:0,他引:1  
为研究单壁碳纳米管(SWCNT)薄膜的三阶非线性光学性质,采用旋转涂覆法在石英玻片上制备出包含SWCNT和聚甲基丙烯酸甲酯(PMMA)的聚合物薄膜。测得薄膜的线性透射谱,并观察了薄膜的表面形貌。为提高测量SWCNT薄膜三阶非线性系数的准确度,研究了Z扫描法测量材料的非线性系数时相关参量变化对测量准确度的影响,并搭建Z扫描系统,研究了自制薄膜的三阶非线性光学性质。通过对实验数据的模拟和计算,得到自制碳纳米管薄膜的非线性吸收系数(β)、三阶非线性折射系数(γ)分别为-7.8×10-7 cm/W、-6.4×10-11 cm2/W,三阶非线性极化率为2.06×10-9 esu。证明SWCNT/PMMA薄膜具有较强的非线性光学特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号